Bl oiam Jrvanal of MTZirols
1 e wl & (199%). 155
g,

Numerical Investigation of High—Re Stationary
Viscous Flow around Circular Cylinder as
Inverse Problem
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The steady viscous flow around circular cylinder is considered for Rey-
nolds numbers for which it is unstable. Method of Variational Imbed-
ding is applied which replaces the original problem by higher—order
correct boundary value problem. The latter is solved numerically by a
difference scheme of splitting type. Resulis are obtained in the range
0<Re<100 and shown to be in good agreement with the literature.

PaccMaTpuB2eTcd CTAHOHAPHOE BA3KOE TeHYeHHE BOKPYT KPYI'OBOro
mHIMHApa npr uHcen PewHoanmca AaAA KOTOPHIX OHO HeycToH4YHEBO.
TprMersaerca Meron Bapuanuonnoro Ilorpy:xesus, 8 XxoTopoM Ha-
XOAHAS I'PAHHYHAS 3A71AYA 3aMCHAECTCA KOpPeKTHoH samaveidt Gojee
BRICOKOro mopagka. Hoeasa rpasmunas safaus pemmaeTcsa YHCAEHO
MeTonoM ApobreiX maron. [lonyueHsl pesyasTATEI B HHTEpBade 0<
Re<100 KOTOPEIE¢ HAXOOATCA B XOPOIIEM COrNACHH ¢ Pe3YALRTATHIMH
APYTHX ABTODOR,

solution can not be obtained as an initial value
problem, i.e., the problem of finding the station-
ary solution becomes incorrect in the sense of
Hadamard.

1. Introduction

One of the most important traits of Navier-
Stokes equations (N-S for brevity) is that for
large Reynolds numbers their solutions become

unstable and through different kinds of bifur-
cations the flow ends up eventually in a tur-
bulent regime. Various scenarios of transition
are known: linear bifurcation with multitude of
secondary stationary regimes in Taylor-Cuette
flow, stiff bifurcation with explosion of a chaotic
regime in Poiseuille flow, etc. The essential
problem everywhere is the same: for sufficiently
large Reynoids number the stationary laminar
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At the same time it is very important to
know the pattern of the steady flow at high Rey-
nolds numbers (even in the parametric domains
where it is instable) for investigating the asymp-
totic properties of N-§, especially the asymp-
totics of the wake, points of detachment of the
flow on the cylinder, pressure distribution along-
side the cylinder surface, etc.

Of fundamental importance is to answer the
question of whether the stationary solution still
exists for higher Reynolds numbers or it even-
tually disappears because this characterizes N-
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S as a dynamical system. Using the language
of theory of dynamical systems, the question
is whether the stationary points of the system
(here: in the sense of functional space) disap-
pear after ceasing to attract the trajectories or
they do persist without attracting the solution.
To these questions the answers can be provided
only by solving the incorrect problem.

The numerical value of critical Reynolds
number for transition depends on flow geometry.
In the present work the steady flow past a circu-
Iar cylinder is considered as a typical example of
a flow that becomes unstable as early as Re = 40
(Reynolds number based on the diameter of the
cylinder). For larger 40 < Re < 100 the sta-
tionary regime is replaced by an unsteady lam-
inar flow called “Karmén vortex street”. With
further increase of RHe the flow ends up in the
turbulent regime. There exist in the literature a
number of numerical solutions to the stationary
problem for Re > 40 and all of them explicitly
or implicitly make use of smoothing techniques
in order to filter out the disturbances that lead
to change to unsteady regime. The purpose of
the present work is to follow radically different
way and to treat the problem as inverse one. To
this end we employ a technique called Method
of Variational Imbedding. Some preliminary re-
sults obtained along these lines were announced
in [18].

2. High Reynolds Number Flow past a
Circular Cylinder
2.1. Posing the Problem

In polar coordinates, the dimensionless
steady Navier-Stokes and continuity equations
have the form
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where u, = u{r,¢) and %, = v(r,p) are the
velocity components parallel respectively to the
polar axes r and ¢; and p = p(z,y) is the pres-
sure. Respectively,
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is called Stokesian.

The Reynolds number Re = dU., /v is the
governing dimensionless parameter. The cylin-
der diameter d = 2a is the characteristic length;
velocity at infinity U, is the characteristic veloc-
ity; and v is the kinematic coefficient of viscosity.
In terms of dimensionless variables, the cylinder
surface is represented by r = 1 while the velocity
at infinity — by unity.

The boundary conditions (b.c. — for brevity)
reflect the non-slipping at the cylinder surface

u,.(],, (p) = 'u.(p(l, go) =0. (2.4)
on the one hand, and the asymptotic matching
with the uniform outer flow at infinity — on the
other. Numerically one has to pose the asymp-
totic condition at certain large enough value of
the radial coordinate called “actual infinity”, say
Ro,. Then the dimensionless b.c. read

tr(Roo, ) =
u‘P(Roov (P) =

cos, (2.5)
—singy. '

Due to the obvious flow symmetry with re-
spect to the line ¢ = 0,7, the computational do-
main may be reduced to 0 < ¢ < m,r > 1 and
additional b.c. on the lines ¢ = 0 and ¢ = 7, are
added to acknowledge the mentioned symmetry,
namely

du,

Up(r,0) =0, =0,
‘P( ) 690 (r,O) (2 6)
uw('r,‘}r)z[]’ aa?:; ( ):0?
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2.2. Numerical difficulties for Large
Reynolds Numbers

The flow past a circular cylinder poses some
special problems when devising the difference
scheme and algorithms. The worst is a result
from the unboundedness of the flow and the slow
algebraic decay ~ r~! of the solution at infin-
ity. The latter leaves the door open for different
kinds of errors connected with the so—called “ac-
tual infinity”. On the other hand, neither carte-
sian nor polar coordinate systems are adequate
enough for describing the topology of the flow
when the separation takes place. These prob-
lems are aggravated with the increase of Rey-
nolds number. The conformal mapping as the
one employed by Fornberg [12,13] do improve
the topological fitness of the mesh but on the
expense of introducing artificial singularities at
the boundary of the body. Another possibility
is to use parabolic coordinate as done in [9,8]
for ideal separated flows. In this first work on
MVI for N-S we refrain from more complicated
meshes in order to concentrate on the basic fea-
tures of the approach.

Table 1 is the table from Fornberg’s works
completed with his own results and those of Pa-
tel [21]. It shows the development of numerical
techniques for the stationary and non-stationary
flows past cylinders. Most of authors used the
vorticity/ stream function formulation. The first
solution is already classics of CFD - this is the
Thom’s solution from 1933. Most of the solu-
tions remain in the region of Re < 100 which
is natural in the light of what has been above
said about the instability of the stationary solu-
tion. Only Fornberg [12,13] decisively improved
the range of applicability of the numerical ap-
proach but once again on the expense of apply-
ing smoothing which although instrumental can
not he rigorously justified.

3. Method of Variational Imbedding
(MVI)

Recently the so-called Method of Variational
Imbedding (MVI — for brevity) has been devel-

oped {1,2,3,4] for inverse and incorrect problems.

Table 1: Some known computations from the
literature

Work Re | Ry
Thom, 1933 [26] 20

Kawaguti, 1953 [16] 40

Jain & Kawaguti, 1966 [14] 50 | 111
Keller & Takami, 1966 [17] 15| 59
Jain & Sankara Rao, 1969 [15] 40 | 111
Son & Hanratty, 1969 [23] 40 | 157
Takami & Keller, 1969 [25] 60 | 17
Thoman & Szewczyk, 1969 [27] | 30| 18
Underwood, 1969 [29] 10| 40

Dennis & Chang, 1970 [11] 100 | 39
Nieuwstadt & Keller, 1973 [20] | 40| 23

Ta, 1975 [24] 120 | 36
Tuann & Olson, 1978 [28] 100 | 20
Fornberg, 1980 [12] 300 | 600
Fornberg, 1985 [13] 600 | 600
Patel, 1987 [21] 40 | 103

MVI is a specific implementation of the Least
Square Method to ODE and PDE and the gist
is to replace the direct solution of the “stiff”
(unstable, incorrect, etc.) boundary or initial
value problem with the problem of minimization
of the quadratic functional of the original set
of equations. The necessary conditions for the
minimization of a functional yield to an appar-
ently more complicated Euler-Lagrange system
to whose solution(s) belongs also the solution
of the original incorrect problem. The advan-
tage is that the imbedding system is much more
tractable and its stationary solutions are sta-
ble, because it has very little in common with
the original physically unstable system. Thus
the solution of the original system is “imbed-
ded” into the solutions of some other system
through a variational procedure - here comes
the coinage MVI. Only for linear problems, the
Fuler-Lagrange equations possess unique solu-
tion and then there is one—to—one correspon-
dence between the original and variational prob-
lems and one may not speak about imbedding.
In the general case, however, the E-L equations
possess more than one solution, corresponding
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to different local extrema, and only the solution

ont which the minimum of the functional is zero

is the solution of the original problem.
Consider the Imbedding functional

T = /: flm (qﬂ + 0% 4 Xz) rdrdp, (3.1)

where:
o = ot Bt  ut  10p
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As far as the boundary value problem for

the N-8 equations possesses a solution then the
global minimum of the functional (3.1) is equal
to zero which is the value the functional assumes
on the solutions of N-5. This allows us to seek
for a local minimum of the functional 7 and to
check afterwards whether this is the global min-
imum.

The necessary conditions for minimizing of
a functional are the so-called Euler-Lagrange
equations which in the case under consideration
have the form

oF  d (9F\ _d [9F

Su, dy 3%‘:’; dr a%‘;n
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where F = (<I’2 + Q%+ Xz).

(3.2)

+

In details the FEuler-Lagrange equations are
presented in the Appendix.

Equations (8.1) and (8.2) are of fourth order
and (8.3) — of second order, All three of them are
of elliptic type and one can consider the set of
imbedding equations as elliptic system of tenth
order. The new system looks apparently much
more complicated than the original, but in fact
what counts is the well posedness of the bound-
ary value problem.

The increased order of the system requires
larger number of boundary conditions. They are
obtained form the so-called “natural” conditions
for minimization of a functional. In the case un-
der consideration they are simply the original
equations taken at the boundary, namely

P(Lp)=0, P(Ru,p)=0,
&(r,0)=0, @(r,7)=0,
ULp)=0, ARw,¢)=0,
Qr,0)=0, Q(r,7)=0,
X(1,9)=0, X(Be,p)=0,
X(r,0)=0, X(r,m)=0,

These conditions together with the eight condi-
tions (2.4), (2.6) on velocity components give the
necessary twenty b.c. for the imbedding system.

After some obvious manipulations we arrive
at the following b.c. for the three sought func-
tions

du,

uw(ly (P) = ur(lﬂo) = o 1 =0,
1 9 & dp
[EETE%&# —- %]r=1 =0 ; (34)
t(Rooy ) = —sing, ur(Roo,p) = cosep,
du, _ Oug _
o ln” B ln " 0, (3.5)
8%u, figh
Up(r,0) = —= = —— =0, (3.6)
¢ 6(102 =0 B‘P =0
O%uy, Ou,
Up(r, T) = = =0, (3.7
EP( ) 3‘P2 oo 8‘10 o= ( )
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Parts of conditions (3.4),(3.5), (3.6) and (3.7)
containing u, are b.c for equation (8.2). Re-
spectively, the parts containing u, are b.c for
equation (8.1). Some minor problems arise when
employing the conditions that are in fact the
original equations, because they are of non-local
form

du,. Ip 1 2 Ju,]
ur'a—T‘FE—E[ ur"ﬁ%]_oa (3.8)

containing both normal and tangential deriva-
tives of the sought function. In this instance
some more care is needed when splitting them
in the method of fractional steps (see the Sec-
tion on splitting).

Finally, the b.c. for pressure read

o _ 1o

Orl,=y Re o2 ey
dp 1 §%u,
‘a—rr=Rm Re Or? =R , (3.9)
o) _ 9] _,

aﬁo w=0 6{P Qo=

4. Iterative Difference Solution to
Imbedding Problem

The leading—order linear operators of the
boundary value problem (b.v.p — for brevity) de-
rived in the previous Section are of fourth order,
so it may be considered as nonlinear bi-harmonic
problem. Tt can only be solved by means of an
iterational process in which at each stage the
equations are linearized. The most consistent
way is to use Newton’s quasilinearization but
it yields coupled systems of difference equations
that require of order of magnitude more compu-
tational time than each of the imbedding equa-
tions. For this reason we employ the simplest lin-
earization in which we suppose that in the coeffi-
cients of the different differential operators that
enter (8.1),(8.2),(8.3), the velocity components
and their derivatives are known from the previ-
ous iteration. Denote these known functions by

tiy(r, ) and (7, ).

For the difference approximations of the
main operators we introduce the notations:

ol o 1 _94_ ii 72 _a_
A = Re? r4 §opt T do (1 +u"°) ¢’
(4.1)
W, _ L & 98 ( _L):*i
Agr = Re? 94 + or I\"" " Rer or

(105 &) _(18 LY
rdp T r Op TZRe)’

(4.2)
Go_ 1 9 10,0
Ao = Re? r4 gt 12 Bgou“"@ga (4.3)

L (B Ry (P, 1y
or 7 "\ Or Re'r'*’) ’

N L

2
CDY w
Ayp = ;.%538_(‘:2: (4.5)
A %gr%, (4.6)

Those terms of equations (8.1),(8.2) and (8.3)
that are not among the specified by (4.1)—{4.6)
we denote by N, M, and M, Tespectively.

4.1. The Splitting

In (8.1),(8.2) and (8.3) we add derivatives
with respect to a fictitious time and render the
problem to a generalized parabolic b.v.p. This
has nothing in common with the physically non-
stationary N—S equations and hence it does not
loose stability under same conditions as N--S do.

A cost efficient algorithm for solving the
“parabolized” imbedding b.v.p. can be con-
structed using the method of coordinate split-
ting pioneered in [22] (see, also [30]). The main
difference here from the mentioned works is that
the parabolic system contains fourth-order dif-
fusion operators. The splitting algorithm for bi-
harmonic operators was outlined in [2] and ap-
plied in [19] to boundary layer thickness iden-
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tification and in [6] — to the so-called Swift-
Hohenberg equation. Recently, the same idea
was employed to the stationary Navier-Stokes
equations [7].

We generalize the scheme of “stabilizing cor-
rection” or second Douglass scheme (see, e.g.,
[30]) to the nonlinear bi-harmonic b.v.p consid-
ered here.

4.1.1. Splitting for wu,,:

After introducing fictitious time, the equa-
tion for u,, becomes a parabolic difference equa-
tion. An implicit scheme for time stepping of the
solution could be the following one

’M"’+1 —
et = (A Al Ay, (27
where the superscript (n) stands for the current
time stage and (n + 1) for the “new” time stage.
The above implicit scheme in full time steps
is approximated by the fractional-step scheme
(be reminded that @, = u}; and 4, = u})

1
n+3

Yo © Uy o] el n
AT - = Awu“’ 2+A::0¢ 'N‘[z”
(4.8)
ugtt — ”$+§ [sa] 1
—_—— — n
AT o(ur %) (4.9)

subjected to the respective part of boundary
conditions (3.4)~(3.7). The last scheme can bhe
rewritten as

(E - Araldy it (E Ara¥lyr
+ [gp] b (4'10)
(E = Aralyuntl = puite (4.11)
- ATAEﬂ Uy

where E stands for the identity difference oper-
ator.
In order to show that the splitting scheme

. 'n.+1-
approximates the former we exclude u, *. To

this end we act upon the eq.(4.11) by the oper-
ator (E ~ ATA!;':]) and add the result to (4.10).

After some obvious manipula.tions we obtain

o
2+ (arpalial]) 2 ————AT Yo o

(AL A it e Ay, (@12)

which approximates the implicit scheme in full
time steps (4.7) with O((A7)?). One can see
now that not only is the splitting scheme cost
efficient, but it is also more stable than the
scheme (4.7) since the operator in the L.h.s act-
ing upon the time difference has a norm greater
than unity. When inverting it one gets an op-
erator of norm lesser than unity increasing thus
stability of the scheme.

4.1.2. Splitting for u,:

In a similar fashion we propose an implicit
scheme for the equation for u, in the form

n

n+1
“ ©= (AR ARty (413)

” — U

AT
which is approximated by the fractional steps

n+15

Ur — u:-L r Tl n
__AT__ = A[]’l‘.l.-p 2+AE;1;!H +NE:=
(4.14)

n4i
uttl — gy, 2
AT

subjected to the respective boundary conditions.

The procedure of exclusion of the half-time
step variable is the same.

It is clear that the boundary condition at the
first half-time step € = 0 is non-local which
creates a problem when splitting is performed
alongside the lines ¢ =0 and ¢ = #. The said
condition contains derivatives in both directions
and hence it must also be splitted. So that, at
the first half-time step we impose the splitted
part of the condition, namely

Alrtt — 2y, (a15)

n-l-%

A |
1 + L™y (4.16)
un+1_u: z

1
- —Arr(u:’:"{'l —_

—— e )y (4-17)
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where

ou, Jp 1 /u,
ofu) = w5~ 57 = 7
The first of these conditions couples the b.v.p
for u, on the first half-time step. On the sec-
ond half-time step we use the second half-time
step from the splitted version of the boundary
condition which is to be considered as an one-
dimensional difference parabolic equation solved

under the following b.c.

2 au(p)

2 " 12 dp

ur(l,0)=0, Br
=, B

4.1.3. Splitting for p:

The splitting scheme for pressure reads:

n+5 — mi 1
- AT P s Aep™i 4+ A + A
4.18]
gl - s ntl _ n 1)
T = A‘Pw(p - F )1 (4'19)

The boundary conditions that couple the three-
diagonal systems for pressure are (3.9).

4.2. The Grid Pattern

In the present paper we employ only uni-
form meshes in both directions. The number
of grid lines in the two directions are given re-
spectively by N, and N,. In order to secure
second order of approximation of b.c. we use ad-
ditional lines outside the domain under consider-
ation (see Fig. 1) where the thick lines represent
the borders of the region of computations). The
spacings are then given by:

Too — @ o

hy =

4.8. Difference Approximations for
Fquations

We use the standard central three-point dif-
ferences for the first and second derivatives

7
N Y
Ny
Ne-1 | 1
Np-2
j=3
j=2
o T 7
j=1
i=1 =2 =3 ng—Q ng—l ng

Figure 1: Grid pattern

and five-point central differences for the fourth
derivatives, namely

du 1
Pzl = EE(’M;‘H — Ui-1)
0%u 1
5.7 = -2~,;L-(u.-+1 — 2u; + ui_q)
a0 ,0u 1
a—mwza_mii o~ };E- ['w?_%u,-“ + ’UJ?_%‘U.,'_1
2 2 ,
_(w'.+% + wi_%)u,] N
where w?+% = (wip1 + w;)% /4,
o dul 1
B_zwa_a: ,‘ o~ };,3 [wi+_;_u,-+1 -+ wi_%ug_l
—(wiy1 + W-_%)’ui] :
where Wiy1 = (wig1 + wi)/2,
dy 1
| = "Eg(”i—z — 4ui_g + Bu;
—4ui + Uig2) ,
&Pu 1
23 o 2—55(—155—2 + 2wy — 2u;

+’U_w:‘+2) 5

where u stands for u,,u, or p, and z stands for
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r or . Respectively h is either A, or Ay, and w
denotes either 2 or (u, — rhz)%

The mixed (oblique) derivatives are approx-
imated as follows

&*u 1
3oar = Thoh (Wit1j41 — it1j-1 — Ui-1j41
@ftr
+ui—1j—1) »
Pu 1
Boir? r T, [(wig1j41 — 2uitj + vit15-1)
z

— (wi—tj41 — 2015 + vi1j-1)]

Fu N 1 [(’U. . Seres it )
ordp® — 2h.hE i+17+1 ij+1 i=15+1

~ (Wig1j—1 = 2uij—1 + %im1j-1)] -

4.4. Difference Approzimations for
Boundary Conditions

The additional lines that were introduced in
the grid (see Fig. 1) allow us to use central differ-
ences for the b.c. First, this makes the cheapest
way to second-order approximation. Second, the
approximation of b.c. is consistent with the ap-
proximation of equations. This has a positive
effect upon the practical conservativeness of the
scheme and increases the stability of iterations.

For function u, the boundary conditions are
approximated as follows:

r=1 ’uq,l,f’z:(}, @{2=0,
r= Ry Up|i N, —1 = —sine; ,
ugali,N,- - uqal:',Nf-—i =0 »
0=0 tela; =0, uphjt wyls; =0,
p=m UplN,-1,; =0,

U | Np=2,5 1 UelN,s = 0,

which closes the five-diagonal systems to which
the half-time steps (4.10) and (4.11) are reduced.
For function u, the b.c. are approximated as
follows.
For ¢ = 0,7 at the first half-time step are
used the conditions

Ur|1j — Url3; = Ur|Ny-25 — ¥r|N,; =0,

and the equation (4.16) at ¢ = 2, N, — 1. At
the second half-time step the equation (4.17) is
solved.

Respectively
r=1 Uiz =0, ulia—uli1=0,
r=Ro : urlin.-1=cosp;,

Uri, Ny — UrliN,—2 =0,

and thus the five-diagonal systems to which re-
duce (4.14) and (4.15) are closed.

All the above approximations for boundary
conditions are of second spatial order.

Then the conditions on function p(r, ) can
be approximated with second order too. The
latter gives three-point differences at the bound-
aries which is not convenient for the three-
diagonal systems (4.18) and (4.19) for p(r, ¢) at
each half-time step. In order to close the system
we perform the following.

For r = 1 from the natural condition of min-
imization of a functional we get

2
P|=‘.3 - P|£,1 = m(urh,l + urli,a)

where is acknowledged that ;|22 = 0. From
eq.(4.18) taken at § = 2 we exclude p|; 3 to obtain
a two-point relation between p|; 1 and pl; 2.

In the same manner at r = R, we get from
the respective N-§ equation

plin, — pliNe—2 =

2
T Re (trliNe—2 — 2up|i N -1 + 2 |inN, )
.

and from the eq.(4.18) taken at j = N, — 1 we
exclude p|; x -2 to obtain a two-point relation
only involving pl; y, and pli n.-1-

In the same manner one can treat the b.c.
for ¢ = 0, i.e., to exclude ps ; from

Pl —pls; =0,

and from eq.(4.19) the latter taken at ¢ = 2.
Thus we a two-point relation only involving p| ;
and plp,; is obtained.
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In a similar fashion for ¢ = 7 the value
p|N,—2,; is excluded from

PIN,-2.f — PlIng.i =0

and from the eq.(4.19) the latter taken at { =
N, 1.

4.5. Note on Solver Used

The splitting scheme reduces at each half-
time step to five- or three- diagonal systems of
algebraic equations. These are solved by the
method of so-called non-monotonous progonka
(see [5]) which is a kind of Gaussian elimination
with pivoting that is highly eficient for multidi-
agonal cases.

4.6. Initial Conditions

The initial conditions for the different un-
knowns u,, u, and p for small Reynolds numbers
(Re =~ 2 = 4) are defined as

uply; = g S8 (4.20)
ri—1
urly; = ?‘; —y5ini, (4.21)
oy = 0, (122)
for 1<i< Ny, 1Zj5<N,,

For larger values of Reynolds number the solu-
tion for the closest smaller Re is used as the ini-
tial condition for the iterations for the current

Re.

4.7. Calculating Stream Function

The problem under consideration is station-
ary and the stream lines coincide with the trajec-
tories of the fluid particles. Hence the most con-
venient visualization of the flow are the isolines
of the stream function. For this reason we calcu-
late the stream function after the velocity com-
ponents (u, and u,) are obtained. It is known
that the stream function ¥ is defined as

ov

o = e

9
and satisfies the Poisson equation
i U 1du
AV=w=—24 £ T 4.2
Y= r  rdp’ (4.24)

Boundary conditions for ¥ are obtained from
(4.23) and the respective b.v.p. is a Neumann
problem. It is clear that in our case due to the
symmetries of the problem, we can use also the
following Dirichlet conditions '

V=0 for r=1, p=0,7,
(4.25)

¥ — —rsing for r—o0o0.

There exists a plethora of different ways to
solve the elliptic equation (4.24). Once again we
employ the splitting method which in this case
is the same as for the pressure equation. For
this reason we will not discuss it here, We are
only to mention here that for the linear Poisson
equation the splitting scheme is unconditionally.
stable.

5. General Consequence of Algorithm

We solve the system governing the functions
u (T, ), u(r, ) and p(r, ) in the following it-
erational manner:
(i) Theinitial conditions u3,u?,p° are specified
according to Subsection 4.6. The counter of
time steps is set n = 0;

(ii) Setting @, = u?, 4, = u, and § = p", func-
tion uZ*! is calculated from the respective
equation;

(iii) Setting @, = u2*!, function v is calcu-
lated from the respective equation;

(iv) Setting @, = u™*!, function p"t! is calcu-
lated from the respective equation.

(v) The norm of the difference between two con-
secutive iterations (n + 1) and (n) (time
steps with respect to fictitious time) is cal-
culated. If this norm is lesser than a prior
prescribed value then the calculations are
terminated. Otherwise the index of itera-
tions is stepped up » = n 4+ 1 and the algo-
rithm is returned to step (ii).
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6. Results and Discussion

The flow about a cylinder is an outer flow
and this poses hard difficulties connected with
the geometry. Since we are concerned in this
first paper on the subject mostly by the prob-
lem of existence of solution for the imbedding
problem, we do not employ non—uniform meshes,
etc, Hence our computations are subject to the
obvious limitations connected with the fact that
the wake increases with Re approximately as the
first power of Re. Note that the problem of the
wake is still a subject of intensive investigations,
especially for very large Re. When we speak for
linear dependence on Re we are aware that it is
approximately the case only for Re < 100. Any-
way, it is restrictive enough and forces us to use
more than 500 grid intervals in radial direction
for the higher Reynolds numbers Re > 80.

The first, and the most significant result is,
that one can indeed obtain a solution of the
original N-§ problem from the Imbedding b.v.p.
This is an algorithmic verification of the state-
ment that the solution of the original problem is
among of the solutions of the Imbedding prob-
lem. Moreover, we did not actually encounter
other solutions of Euler-Lagrange equations that
give another local minimum of the Imbedding
functional (3.1) rather than the solution of orig-
inal N-S problem. It is clear that to formally
prove this statement is a hard task, but our
results are at least suggestive that if there ex-
ist more than one solution, then these solutions
(attractors) are well separated in the functional
space and starting from “reasonable” initial con-
dition, we inevitably end up with the solution
of the original problem after the iterations con-
verge. One should be reminded that this is not
the case with MVI applications to identification
of homoclinics ([1,10]) where the gist of regular-
ization consists in smooth transition from easily
calculated “artificial” solution of the Imbedding
problem with non—zero value for the functional,
to the solution of the original one with zero value
functional.

The highest Re for which we could get re-
sults on uniform grids without intolerable defor-
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mation of the solution was Re = 100. Fig. 2
shows the patterns of flow for different Reynolds
numbers Re > 30 when the separation of the
streaming is well established.
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™
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Figure 2: Streamlines the flow past a cylinder.
Evolution with Reynolds number.

Respectively Fig. 3 presents the topography
of the vorticity function for the largest Reynolds
number Re = 100.

Re=100

Figure 3: Vorticity isolines for Re = 100.

Important characteristics of the flow are the
pressure and vorticity distributions alongside the
cylinder surface. Fig. 4 shows the pressure distri-
bution for different Reynolds number. It is seen
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Figure 4: Pressure distribution along the surface
of cylinder.

that when Re > 30 the pressure distribution is
quantitatively quite close to one of an ideal flow
with separation.

Fig. 5 shows the vorticity distribution. Once
again one sees that Re > 30 is already the range
when the Reynolds number ceases to play quan-
titative role.

Quantitative comparison with the numerical
calculations from the literature ensures that in-
deed the solution to the original N-8 problem
is obtained. With this the programme of the
present work is fulfilled.

7. Conclusions

The steady solution to Navier-Stokes equa-
tions for high-Reynolds number is unstable to
and hence the problem of its calculation is in-
correct in the sense of Hadamard. Finding the
steady solution to the problem around circular
cylinder is considered here as an inverse problem
and treated by the Method of Variational Imbed-
ding (MVI). The original unstable problem is re-
placed by a higher—order boundary value prob-
lem for the Euler-Lagrange equations represent-
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Figure 5: Distribution of vorticity function w
along the surface of cylinder.

ing the necessary conditions for minimization of
the square functional of the Navier—Stokes equa-
tions. For the numerical solution of the higher-
order system a difference scheme of splitting type
is devised and respective iterative algorithm is
created. The performance of the scheme is ver-
ified on different uniform meshes. Results are
obtained for Re < 100. This answers in affir-
mative the question of whether the steady solu-
tion does exist for Reynolds numbers Re > 40
when it ceases to be stable and the direct simu-
lations of the time—dependent N-S fail to recover
it. The pressure distribution and drag force com-
pare quantitatively very well with the available
experimental or numerical data.
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8. Appendix: Euler-Lagrange Equations
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