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The steady viscous flow a.round circular cylinder is considered for Rey­
nolds numbers for which it is unstaЬle. Method of Variational lmbed­
ding is a.pplied which replaces the original proЬlem Ьу higher-order 
correct boundary value proЬlem. The latter is solved numerically Ьу а 
difference scheme of splitting type. Results are oЬtained in the range 
O:S;Re~100 and shown to Ье in good agreement with the literature. 

Рассматривается стационарное вязкое течение вокруг кругового 

цилиндра при чисел Реиволдса для которых оно иеустойчиво. 

Примеияетси Метод Вариационного Погружеиия, в котором из~ 

ходкая граничная задача заменяется хоректвой задачей более 

высокого порядка. Новая граничная задача решается числено 

методом дробных шагов. Получены результаты в интервале 0:5 
Re5100 которые находятся в хорошем согласии с результатыми 
других авторов. 

One of the most important traits of Navier­
Stokes equations (N-S for brevity) is that for 
large Reynolds numbers their solutions become 
unstaЬle and through different kinds of Ьifur­
cations the f!ow ends up eventually in а tur­
bulent regime. Various scenarios of transition 
are known: linear Ьifurcation with multitude of 
secondary stationary regimes in Taylor-Cuette 
f!ow, stiff Ьifurcation with explosion of а chaotic 
regime in Poiseuille f!ow, etc. The essential 
proЬlem everywhere is the same: for sufficiently 
large Reynolds number the stationary laminar 

solution can not Ье obtained as an initial value 
proЬlem, i.e., the proЬlem of finding the station­
ary solution becomes incorrect in the sense of 
Hadamard. 

At the same time it is very important to 
know the pattern of the steady flow at high Rey­
nolds numbers ( even in the parametric domains 
where it is instaЬle) for investigating the asymp­
totic properties of N-S, especially the asymp­
totics of the wake, points of detachment of the 
f!ow on the cylinder, pressure distribution along­
side the cylinder surface, etc. 

Of fundamental importance is to answer the 
question of whether the stationary solution still 
exists for higher Reynolds numbers or it even­
tually disappears because this characterizes N-

•оп leave from N ationa.l Institute of Meteorology & 
Hydrology, Bulgarian Academy of Sciences, Sofia 1184, 
BULGARIA 

1 



High-Re Viscoиs Flows as Inverse ProЫem 

S as а dynamical systemo Using the language 
of theory of dynamical systems, the question 
is whether the stationary points of the system 
(here: in the sense of functional space) disap­
pear after ceasing to attract the trajectories or 
they do persist without attracting the solutiono 
То these questions the answers can Ье provided 
only Ьу solving the incorrect proЬlemo 

The numerical value of critical Reynolds 
number for transi tion depends on flow geometryo 
ln the present work the steady flow past а circu­
lar cylinder is considered as а typical example of 
а flow that becomes unstaЬle as early as Re = 40 
(Reynolds number based on the diameter of the 
cylinder)o For larger 40 < Re < 100 the sta­
tionary regime is replaced Ьу an unsteady lam­
inar flow called "Karman vortex street" о With 
further increase of Re the flow ends up in the 
turbulent regimeo There exist in the literature а 
number of numerical solutions to the stationary 
proЬ!em for Re > 40 and all of them explicitly 
or implicitly make use of smoothing techniques 
in order to filter out the disturbances that lead 
to change to unsteady regimeo The purpose of 
the present work is to follow radically different 
way and to treat the proЬlem as inverse oneo То 
this end we employ а technique called Method 
of Variational lmbeddingo Some preliminary re­
sults obtained along these lines were announced 
in [18]о 

2о High Reynolds Number Flow past а 
Circular Cylinder 

2olo Posing the ProЬlem 

ln polar coordinates, the dimensiouless 
steady Navier-Stokes and continuity equations 
have the form 

и., ди., и", и, 1 др + ---+--=---
r дr.р r r дr.р 

+ __!__ [пи + ~диr], 
Re "' r дr.р 

диr 
и,-{) + . r 

(2о1) 

2 

+ __!__ [пи, - ~ ди.,] , 
Re r дr.р 

(202) 

д и, 
+ и,+~ди.,=О, (203) 

дr r r дr.р 

where иr = u(r,r.p) and и", = v(r,r.p) are the 
velocity components parallel respectively to the 
polar axes r and r.p; and р = р(х, у) is the pres­
sureo Respecti vely, 

{)2 1 д 1 1 82 

D=-+----+--
- дr2 r дr r2 r2 дr.р2 

is called Stokesiano 
The Reynolds number Re = dU00 fv is the 

governing dimensionless parametero The cylin­
der diameter d = 2а is the characteristic length; 
velocity at infinity U00 is the characteristic veloc­
ity; and v is the kinematic coefficient of viscosityo 
ln terms of dimensionless variaЬ!es, the cylinder 
surface is represented Ьу r = 1 while the velocity 
at infinity - Ьу unityo 

The boundary conditions (Ьосо - for brevity) 
reflect the non-slipping at the cylinder surface 

иr(1,r.p) = u",(1,r.p) =О о (2.4) 

on the one hand, and the asymptotic matching 
with the uniform outer flow at infinity- on the 
othero Numerically one has to pose the asymp­
totic condition at certain large enough value of 
the radial coordinate called "actual infinity", say 
Rooo Then the dimensionless Ьосо read 

иr( R00 , 'Р) = COS 'Р , 

и.,(R00 ,r.p) = -sinr.po 
(2о5) 

Due to the obvious flow symmetry with re­
spect to the line r.p = О, 7Г, the computational do­
main may Ье reduced to О :::; r.p :::; 7Г, r <': 1 and 
additional Ьосо on the lines r.p = О and r.p = 7Г, are 
added to acknowledge the mentioned symmetry, 
namely 

и.,(r,О) =О, 

и.,(r,7Г) =О, 

диr 1 _О 
дr.р (r,O) - ' 

диr 1 -О 
дr.р (r,".) - ' 

(206) 
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2.2. Numerical difficulties for Large 
Reynolds Numbers 

The f!ow past а circular cylinder poses some 
special proЬ!ems w hen devising the difference 
scheme and algorithms. The worst is а result 
from the unboundedness of the f!ow and the slow 
algebraic decay ~ r-1 of the solution at infin­
ity. The latter leaves the door open for different 
kinds of errors connected with the so-called "ac­
tual infinity". On the other hand, neither carte­
sian nor polar coordinate systems are adequate 
enough for describlng the topology of the f!ow 
when the separation takes place. These prob­
lems are aggravated with the increase of Rey­
nolds number. The conformal mapping as the 
one emp]oyed Ьу Fornberg [12,13] do improve 
the topological fitness of the mesh but on the 
expense of introducing artificial singularities at 
the boundary of the body. Another possibllity 
is to use parabolic coordinate as done in [9,8] 
for ideal separated f!ows. In this first work on 
MVI for N-S we refrain from more complicated 
meshes in order to concentrate on the basic fea­
tures of the approach. 

ТаЬ!е 1 is the tаЬ!е from Fornberg's works 
completed with his own results and those of Pa­
tel [21]. It shows the development of numerical 
techniques for the stationary and non-stationary 
f!ows past cylinders. Most of authors used the 
vorticity / stream function formulation. The first 
solution is already classics of CFD - this is the 
Thom's solution from 1933. Most of the solu­
tions remain in the region of Re < 100 which 
is natural in the light of what has been above 
said about the instabllity of the stationary solu­
tion. Only Fornberg [12,13] decisively improved 
the range of applicabllity of the numerical ap­
proach but once again on the expense of apply­
ing smoothing which although instrumental can 
not Ье rigorously justified. 

3. Method of Vaгiational Imbedding 
(MVI) 

Recently the so-called Method of Variational 
Imbedding (MVI - for brevity) has been devel­
oped [1,2,3,4] for inverse and incorrect proЬ!ems. 
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ТаЬ!е 1: Some known computations from the 
literature 

Work Re Roo 
Thom, 1933 [26] 20 
Kawaguti, 1953 [16] 40 
Jain & Kawaguti, 1966 [14] 50 111 
Keller & Takami, 1966 [17] 15 59 
Jain & Sankara Rao, 1969 [15] 40 111 
Son & Hanratty, 1969 [23] 40 157 
Takami & Keller, 1969 [25] 60 17 
Thoman & Szewczyk, 1969 [27] 30 18 
Underwood, 1969 [29] 10 40 
Pennis & Chang, 1970 [11] 100 39 
Nieuwstadt & Keller, 1973 [20] 40 23 
Та, 1975 [24] 120 36 
Tuann & Olson, 1978 [28] 100 20 
Fornberg, 1980 [12] 300 600 
Fornberg, 1985 [13] 600 600 
Patel, 1987 [21] 40 103 

MVI is а specific implementation of the Least 
Square Method to ODE and PDE and the gist 
is to replace the direct solution of the "stiff" 
( unstaЬ!e, incorrect, etc.) boundary or initial 
value proЬlem with the proЬ!em of minimization 
of the quadratic functional of the original set 
of equations. The necessary condi tions for the 
minimization of а functional yield to an appar­
ently more complicated Euler-Lagrange system 
to whose solution( s) belongs also the solution 
of the original incorrect proЬ!em. The advan­
tage is that the imbedding system is much more 
tractaЬ!e and its stationary solutions are sta­
Ьle, because it has very litt]e in common with 
the original physically unstaЬ!e system. Thus 
the solution of the original system is "imbed­
ded" into the solutions of some other system 
through а variational procedure - here comes 
the coinage MVI. Only for linear proЬ!ems, the 
Euler-Lagrange equations possess unique solu­
tion and then there is one-to-one correspon­
dence between the original and variational prob­
lems and one may not speak about imbedding. 
In the general case, however, the Е-1 equations 
possess more than one solution, corresponding 
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to different !оса! extrema, and only the solution 
on which the minimum of the functional is zero 
is the solution of the original proЬlem. 

Consider the Imbedding functional 

where: 

ф 
ди'Р u'P ди'Р и'Р Ur 1 др 

= и-+---+--+--r дr r д<р r r д<р 

1 ( 2 дur) 
Re Du"' + r2 д<р 

n диr и'Р диr и~ др 
= и-+-----+-r дr r д<р r дr 

2_ ( Dиr - ~ ди'Р) 
Re r2 д<р 

х 
дur иr 1 ди'Р 

= -+-+--
дr r r д<р 

As far as the boundary value proЬlem for 
the N-S equations possesses а solution then the 
global minimum of the functional (3.1) is equal 
to zero which is the value the functional assumes 
on the solutions of N-S. This allows us to seek 
for а local minimum of the functional .J and to 
check afterwards whether this is the global min­
imum. 

The necessary conditions for minimizing of 
а functional are the so-called Euler-Lagrange 
equations which in the case under consideration 
have the form 

дF 

диr 

дF 

д и"' 

d~ (в8')- :r (:;) <3
·
2

) 

+ d~2 (д~{)+ ::2 (в~f,r) =О, 

d~ (в~)- :r (в~) <
3

·
3

) 

+ d~2 (в~fr) + ::2 (в~f{) = 
0

' 
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In details the Euler-Lagrange equations are 
presented in the Appendix. 

Equations (8.1) and (8.2) are offourth order 
and (8.3)- of second order. All three ofthem are 
of elliptic type and one can consider the set of 
imbedding equations as elliptic system of tenth 
order. The new system looks apparently much 
more complicated than the original, but in fact 
what counts is the well posedness of the bound­
ary value proЬlem. 

The increased order of the system requires 
larger number of boundary conditions. They are 
obtained form the so-called "natural" conditions 
for minimization of а functional. In the case un­
der consideration they are simply the original 
equations taken at the boundary, namely 

Ф(1, <р) =О, Ф(Rоо, <р) =О, 

Ф(r,О) =О, Ф(r,1r) =О, 

n{l, <р) =О, Q{R00 , <р) =О, 

n(r,O) =О, Q(r,1r) =О, 

Х(1, <р) =О, X(Roo, <р) =О, 

X(r,O)= О, X(r,1r)= О, 

These conditions together with the eight condi­
tions (2.4), (2.6) on velocity components give the 
necessary twenty Ь.с. for the imbedding system. 

After some obvious manipulations we arrive 
at the following Ь.с. for the three sought func­
tions 

=о, 

= о, (3.4) 

иr(Roo,'P) = cos<p, 

ди"' 1 = О, (3.5) 
дт r==Roo 

(3.6) 

и"'(r, 1r) = ддиr 1 = О, (3.7) 
'Р <р=1< 
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Parts of conditions (3.4),(3.5), (3.6) and (3.7) 
containing и"' are Ь.с for equation (8.2). Re­
spectively, the parts containing Ur are Ь.с for 
equation (8.1). Some minor proЬ!ems arise when 
employing the conditions that are in fact the 
original equations, because they are of non-local 
form 

дur др 1 [ 2 ди'l'] 
Ur дr + дr - Re Dur- rZ дrр =О, (3.8) 

containing both normal and tangential deriva­
tives of the sought function. ln this instance 
some more care is needed when spli tting them 
in the method of fractional steps ( see the Sec­
tion on splitting). 

Finally, the Ь.с. for pressure read 

= 

дрi = 
8rp <р=О 

дрi -о 
дrр '1'="- . 

4. Iterative Difference Solution to 
lmbedding ProЬlem 

(3.9) 

The leading-order linear operators of the 
boundary value proЬlem (b.v.p- for brevity) de­
rived in the previous Section are offourth order, 
so it may Ье considered as nonlinear Ьi-harmonic 
proЬ!em. It can only Ье solved Ьу means of an 
iterational process in which at each stage the 
equations are linearized. The most consistent 
way is to use Newton's quasilinearization but 
it yields coupled systems of difference equations 
that require of order of magnitude more compu­
tational time than each of the imbedding equa­
tions. For this reason we employ the simplest lin­
earization in which we suppose that in the coeffi­
cients of the different differential operators that 
enter (8.1),(8.2),(8.3), the velocity components 
and their derivatives are known from the previ­
ous iteration. Denote these known functions Ьу 
u"'(r,rp) and ur(r,rp). 
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For the difference approximations of the 
main operators we introduce the notations: 

A[r] ~ 
4<р-

A[r] 
4r 

А"'"' 

Arr 

+ 

~ 

~ 

(4.3) 

( 4.4) 

1 az 
(4.5) r2 8rp2 , 

18 8 
(4.6) --r-

rд дт' 

Those terms of equations (8.1),(8.2) and (8.3) 
that are not among the specified Ьу ( 4.1)-( 4.6) 
we denote Ьу .N('I']>.N(r] and N(p]> respectively. 

4.1. The Splitting 

ln (8.1),(8.2) and (8.3) we add derivatives 
with respect to а fictitious time and render the 
proЬ!em to а generalized parabolic b.v.p. This 
has nothing in common with the physically non­
stationary N-S equations and hence it does not 
loose stabllity under same conditions as N-S do. 

А cost efficient algorithm for solving the 
"parabolized" imbedding b.v.p. can Ье con­
structed using the method of coordinate split­
ting pioneered in (22) ( see, also (30)). The main 
difference here from the mentioned works is that 
the parabolic system contains fourth-order dif­
fusion operators. The splitting algorithm for Ьi­
harmonic operators was outlined in (2) and ap­
plied in (19) to boundary layer thickness iden-
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tification and in [6] - to the so-called Swift­
Hohenberg equation. Recently, the same idea 
was employed to the stationary Navier-Stokes 
equations [7]. 

We generalize the scheme of "stabilizing cor­
rection" or second Douglass scheme ( see, e.g., 
[30]) to the nonlinear Ьi-harmonic b.v.p consid­
ered here. 

4.1.1. Splitting for и.,: 

After introducing fictitious time, the equa­
tion for и., becomes а parabolic difference equa­
tion. An implicit scheme for time stepping of the 
solution could Ье the following one 

(4.7) 

where the superscript ( n) stands for the current 
time stage and ( n + 1) for the "new" time stage. 

The above implicit scheme in full time steps 
is approximated Ьу the fractional-step scheme 
(Ье reminded that u., =и~ and Ur =и~) 

n+t n u<p - u~P 
= 

д т 

(4.9) 

subjected to the respective part of boundary 
conditions (3.4)-(3.7). The last scheme can Ье 
rewri tten as 

(Е- дrА["'])ип+t = (Е- дrA["'])un 
4r f.P 4<;> <р 

+ MAI(~], (4.10) 
1 

(Е- МА~~)и~+l = Еи~+;;: (4.11) 

дrA["']un 
4<;> <р ' 

where Е stands for the identity difference oper­
ator. 

In order to show that the spli tting scheme 
n+!. 

approximates the former we exclude и., 2
• То 

this end we act upon the eq.( 4.11) Ьу the oper­

ator (Е- дтА~~]) and add the result to (4.10). 

6 

After some obvious manipulations we obtain 

( 4.12) 

which approximates the implicit scheme in full 
time steps (4.7) with O((дrj2). One can see 
now that not only is the splitting scheme cost 
efficient, but it is also more staЬle than the 
scheme ( 4. 7) since the operator in the l.h.s act­
ing upon the time difference has а norm greater 
than unity. When inverting i t one gets an op­
erator of norm lesser than unity increasing thus 
staЬili ty of the scheme. 

4.1.2. Splitting for иr: 

In а similar fashion we propose an implicit 
scheme for the equation for Ur in the form 

which is approximated Ьу the fractional steps 

n+!. 
Ur 2 

- U~ 

д т 

= A[r] п+t A[r] п лrn 
4<pUr + 4r Ur + JV[r] ' 

( 4.14) 

= л[r](иn+l - un) 
4r т r ' ( 4.15) 

sub jected to the respective boundary condi tions. 
The procedure of exclusion of the half-time 

step variaЬle is the same. 
It is clear that the boundary condition at the 

first half-time step n = о is non-local which 
creates а proЬlem when splitting is performed 
alongside the lines 'Р = О and 'Р = 1r. The said 
condition contains derivatives in both directions 
and hence it must also Ье splitted. So that, at 
the first half-time step we impose the splitted 
part of the condition, namely 

= 1 (л n+t А п) Re 1pr.pUr + rrUr 

+C[ur] ( 4.16) 

= 1 А ( n+l ") RerrUr -ur, ( 4.17) 
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where 

.С[иr] = -иr 8иr _ др _ __!__ (иr + 2_ 8и"') 
8r 8r Re r2 r2 д<р 

The first of these conditions couples the b.v.p 
for и"' on the first half-time step. On the sec­
ond half-time step we use the second half-time 
step from the splitted version of the boundary 
condition which is to Ье considered as an one­
dimensional difference parabolic equation solved 
under the following Ь.с. 

( ) 8иr( ) иr 1,<р =0, дr 1,<р =0, 

( ) 8иr( ) иr R<X" <р = cos <р , дr Roo, 'Р =О. 

4.1.3. Splitting for р: 

The splitting scheme for pressure reads: 

А n+ 1 А n •fn = rrP ;: + 'Р'Рр + JV(p] 

( 4.18) 

( 4.19) 

The boundary conditions that couple the three­
diagonal systems for pressure are (3.9). 

4.2. The Grid Pattern 

In the present paper we employ only uni­
form meshes in both directions. The number 
of grid lines in the two directions are given re­
spectively Ьу Nr and N <р· In order to secure 
second order of approximation of Ь.с. we use ad­
ditionallines outside the domain under consider­
ation ( see Fig. 1) where the thick lines represent 
the borders of the region of computations ). The 
spacings are then given Ьу: 

h - roo- а 
r- Nr- 3 ' 

4.3. Difference Approximations for 
Eqиations 

We use the standard central three-point dif­
ferences for the first and second derivatives 
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r 

1 

о 1Г <р 

j=l 
i=l i=2 i=З 

Figure 1: Grid pattern 

and five-point central differences for the fourth 
derivatives, namely 

8ul 1 

8х ; 
ё:е 

2
h ( иi+1 - Ui-1) 

82и' 1 

8х2 . 
ё:е 

2
h ( Ui+J - 2и; + Ui-1) 

• 
8 2 8иl 
8х w 8х i ё:е 1 [ 2 2 h2 wi+~ Ui+t + wi-t Ui-t 

-(w~+! + w~_!)Ui] , 
2 2 

where W~+! = ( Wi+J + Wi )2 /4 , 
2 

8 8ul 
8х w 8х; ё:е /;,2 [wi+k Ui+t + wi-k Ui-1 

-(w;+l +w;_!)u;j, 
2 2 

where W;+l = ( Wi+J + W;)/2, 
2 

84и' 1 

8х4 . "" h4 ( Ui-2 - 4Щ-1 + 6и; 
• 

-4Ui+l + Ui+2), 

ази' 1 

8х3 . "" 2
h3 ( -u;-2 + 2u;-l - 2и;н 

• 
+Ui+2)' 

where и stands for и., и"' or р, and х stands for 
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т or <р. Respectively h is either hr or h"'' and w 
denotes either и~ or ( Ur - r 1. )2. 

The mixed ( oЬlique) derivatives are approx­
imated as follows 

1 
4h h ( Ui+lj+l - Ui+1j-1 - Ui-1j+1 

<р r 

+Ui-1j-1) ' 

1 

2
h h2 (( Ui+lj+l - 2Ui+lj + Ui+lj-1) 

<р r 

- ( Ui-1j+1 - 2ui-1j + Ui-1j-1)] , 

1 

2
h h2 (( Ui+1j+1 - 2Uij+1 + Ui-1j+1) 

r <р 

- ( Ui+lj-1 - 2Uij-1 + Ui-1j-1)) · 

4.4. Di.fference Approximations fот 
Boundary Conditions 

The addi tionallines that were introduced in 
the grid ( see Fig. 1) allow us to use central differ­
ences for the Ь.с. First, this makes the cheapest 
way to second-order approximation. Secorul, the 
approximation of Ь.с. is consistent with the ap­
proximation of equations. This has а positive 
effect upon the practical conservativeness of the 
scheme and increases the stabllity of iterations. 

For function и"' the boundary conditions are 
approximated as follows: 

r = 1 

r = Roo 

<р=О 

<р=1Г 

и"'li,2 = О, Ф;2 = О, 
Ur,oli,Nr-1 = - sin 'Pi, 

Ur,oli,Nr - u<pfi,Nr-2 = 0, 

и"'l2,j = О, и<pl1,j + и"'lз,j =О, 
и<p1Ntp-1,j = О , 

и"'IN\P-2,j + и"'INIP,j = О, 

which closes the five-diagonal systems to which 
the half-time steps ( 4.10) and ( 4.11) are reduced. 

For function Ur the Ь.с. are approximated as 
follows. 

For <р = О, 1Г at the first l1alf-time step are 
used the conditions 
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and the equation (4.16) at i = 2,N"'- 1. At 
the second half-time step the equation (4.17) is 
solved. 

Respectively 

r=1 

r = Roo 
Urli,2 = 0, Urli,З- Urli,l = 0, 

Ur li,Nr-1 = COS <pi , 

Ur li,Nr - Ur li,Nr-2 = О ' 

and thus the five-diagonal systems to which re­
duce ( 4.14) and ( 4.15) are closed. 

All the above approximations for boundary 
conditions are of second spatial order. 

Then the conditions on function р(т, r.p) can 
Ье approximated with second order too. The 
latter gives three-point differences at the bound­
aries which is not convenient for the three­
diagonal systems (4.18) and (4.19) for р(т,r.р) at 
each half-time step. In order to close the system 
we perform the following. 

For r = 1 from the natural condition of min­
imization of а functional we get 

where is acknowledged that Ur l2,2 = О. From 
eq.( 4.18) taken at j = 2 we exclude pl;,3 to obtain 
а two-point relation between Pli,1 and Pli,2· 

In the same manner at т = Roo we get from 
the respective N -S equation 

2 
hrRe (urli,N.-2- 2urli,N.-1 + Urli,N.), 

and from the eq.(4.18) taken at j = Nr- 1 we 
exclude Pli,N.-2 to obtain а two-point relation 
only involving Pli,Nr and Pli,Nr-1· 

In the same manner one can treat the Ь.с. 
for <р =О, i.e., to exclude рз,j from 

Рiц- Plз,j = О, 

and from eq.( 4.19) the latter taken at i = 2. 
Thus we а two-point relation only involving Pll,j 
and Pl2,j is oЬtained. 
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In а similar fashion for <р = 1r the value 
PIN.-2,j is excluded from 

and from the eq.( 4.19) the latter taken at i = 
N"'-1. 

4.5. Note оп Solver Used 

The splitting scheme reduces at each half­
time step to five- or three- diagonal systems of 
algebraic equations. These are solved Ьу the 
method of so-called non-monotonous progonka 
(see [5]) which is а kind of Gaussian elimination 
with pivoting that is higbly efficient for multidi­
agonal cases. 

4.6. Initial Conditions 

The initial conditions for the different un­
knowns и"', иr and р for small Reynolds numbers 
(Re"" 2 7 4) are defined as 

и"'l·. 
Tj- 1 

(4.20) cos 'Pi ' .,, roo -1 

иrl· · = 
Tj- 1 . 

(4.21) Slll l.pi , .,, 
Т00 -1 

Рiц = о, ( 4.22) 

for 1::; i::; N"', 1 ::; j ::; N., 

For larger values of Reynolds number the solu­
tion for the closest smaller Re is used as the ini­
tial condition for the iterations for the current 
Re. 

4-7. Calcиlating Stream Fиnction 

The proЬ!em under consideration is station­
ary and the stream lines coincide with the trajec­
tories of the fluid particles. Hence the most con­
venient visualization of the flow are the isolines 
of the stream function. For this reason we calcu­
late the stream function after the velocity com­
ponents ( иr and и"') are obtained. It is known 
that the stream function Ф is defined as 

8Ф дФ 
8т = и"' , д<р = -ти"' ( 4.23) 
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and satisfies the Poisson equation 

~ Ф = OJ = д и"' + и"' _ ~ диr , 
дт т r д<р 

( 4.24) 

Boundary conditions for Ф are obtained from 
(4.23) and the respective b.v.p. is а Neumann 
proЬ!em. It is clear that in our case due to the 
symmetries of the proЬ!em, we can use also the 
following Dirichlet conditions 

Ф = О for r = 1 , <р = О,,.. , 
Ф->-rsin<p for r->oo. 

( 4.25) 

There exists а plethora of different ways to 
solve the elliptic equation ( 4.24). Once again we 
employ the splitting method which in this case 
is the same as for the pressure equation. For 
this reason we will not discuss it here. We are 
only to mention here that for the linear Poisson 
equation the splitting scheme is unconditionally. 
staЬ!e. 

5. General Consequence of Algorithm 

We solve the system governing the functions 
и"'(т,<р),иr(т,<р) and р(т,<р) in the following it­
erational manner: 

(i) The initial conditions и~, и~, р0 are specified 
according to Subsection 4.6. The counter of 
time steps is set n = О; 

(ii) Setting иr = и~, и"' = и~ and р = pn, func­
tion и~+l is calculated from the respective 
equation; 

(iii) Setting и"' = и~+l, function и~+l is calcu­
lated from the respective equation; 

(iv) Setting иr = и~+l, function pn+l is calcu­
lated from the respective equation. 

( v) The norm of the difference between two con­
secutive i terations ( n + 1) and ( n) ( time 
steps with respect to fictitious time) is cal­
culated. If this norm is lesser than а prior 
prescribed value then the calculations are 
terminated. Otherwise the index of itera­
tions is stepped up n = n + 1 and the algo­
rithm is returned to step (ii). 
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6. Results and Discussion 

The fiow about а cylinder is an outer fiow 
and this poses hard difliculties connected with 
the geometry. Since we are concerned in this 
first paper on the subject mostly Ьу the prob­
lem of existence of solution for the imbedding 
proЬ!em, we do not employ non-uniform meshes, 
etc. Hence our computations are subject to the 
obvious limitations connected with the fact that 
the wake increases with Re approximately as the 
first power of Re. Note that the proЬ!em of the 
wake is still а subject of intensive investigations, 
especially for very large Re. When we speak for 
linear dependence on Re we are aware that it is 
approximately the case only for Re < 100. Any­
way, it is restrictive enough and forces us to use 
more than 500 grid intervals in radial direction 
for the higher Reynolds numbers Re ::0: 80. 

The first, and the most significant result is, 
that one can indeed obtain а solution of the 
original N-S proЬ!em from the Imbedding b.v.p. 
This is an algorithmic verification of the state­
ment that the solution of the original proЬ!em is 
among of the solutions of the Imbedding prob­
lem. Moreover, we did not actually encounter 
other solutions of Euler-Lagrange equations that 
give another !оса! minimum of the Imbedding 
functional (3.1) rather than the solution of orig­
inal N -S proЬlem. It is clear that to formally 
prove this statement is а hard task, but our 
results are at least suggestive that if there ex­
ist more than one solution, then these solutions 
( attractors) are well separated in the functional 
space and starting from "reasonaЬ!e" ini tial con­
dition, we inevitaЬ!y end up with the solution 
of the original proЬ!em after the iterations con­
verge. One should Ье reminded that this is not 
the case with MVI applications to identification 
of homoclinics ((1,10]) where the gist of regular­
ization consists in smooth transi tion from easily 
calculated "artificial" solution of the lmbedding 
proЬ!em with non-zero value for the functional, 
to the solution of the original one with zero value 
functional. 

The highest Re for which we could get re­
sults on uniform grids without intoleraЬ!e defor-
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mation of the solution was Re = 100. Fig. 2 
shows the patterns of ftow for different Reynolds 
numbers Re 2 30 when the separation of the 
streaming is well established. 

Rе=ЗО 

Re=50 

Re=100 

3 4 

Figure 2: Streamlines the fiow past а cylinder. 
Evolution with Reynolds number. 

Respectively Fig. 3 presents the topography 
of the vorticity function for the largest Reynolds 
number Re = 100. 

Re=100 

Figure 3: Vorticity isolines for Re = 100. 

Important characteristics of the fiow are the 
pressure and vorticity distributions alongside the 
cylinder surface. Fig. 4 shows the pressure distri­
bution for different Reynolds number. It is seen 
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Figure 4: Pressure distribution along the surface 
of cylinder. 

that when Re ;::: 30 the pressure distribution is 
quantitatively quite close to one of an ideal fiow 
with separation. 

Fig. 5 shows the vorticity distribution. Once 
aga.in one sees that Re ;::: 30 is already the range 
when the Reynolds number ceases to play quan­
titative role. 

Quantitative comparison with the numerical 
calculations from the literature ensures that in­
deed the solution to the original N-S proЬlem 
is oЬta.ined. With this the programme of the 
present work is fulfilled. 

7. Conclusions 

The steady solution to Navier-Stokes equa­
tions for high-Reynolds number is unstaЬle to 
and !1ence the proЬ!em of its calculation is in­
correct in the sense of Hadamard. Finding the 
steady solution to the proЬlem around circular 
cylinder is considered here as an inverse proЬlem 
and treated Ьу the Method of Variational Imbed­
ding (MVI). The original unstaЬle proЬlem is re­
placed Ьу а higher-order boundary value prob­
lem for the Euler-Lagrange equations represent-

m 
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Figure 5: Distribution of vorticity function о; 

along the surface of cylinder. 

ing the necessary conditions for rninirnization of 
the square functional of the N avier-Stokes equa­
tions. For the numerical solution of the higher­
order system а difference scheme of splitting type 
is devised and respective iterative algori.thm is 
created. The performance of the scheme is ver­
ified on different uniform meshes. Results are 
obta.ined for Re ::; 100. This answers in affir­
mative the question of whether the steady solu­
tion does exist for Reynolds numbers Re > 40 
when it ceases to Ье staЬ!e and the direct simu­
lations of the time-dependent N-S fa.il to recover 
it. The pressure distribution and drag force com­
pare quantitatively very well with the ava.ilaЬ!e 
experimental or numerical data. 
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8. Appendix: Euler-Lagrange Equations 
For urp: 

( 2и" _ .!:_ ди") 
r r д<р 

+~ {(иr __ 1_) [иr ди" + и" ди" + и"иr +.!:_др _ ..!._ (д2и" + .!:_ ди" + ..!:._ д2и" _ и" + ~ диr )]} 
дr Re дr r д<р r r д<р Re дr2 r дr r2 д<р2 r2 r2 д<р 

+-2-~ [иr ди" +и" ди" + u"иr +.!:.др - _..!._ (д2и" +.!:. ди" + ..!:._ д2и" - и" + ~ дur )] 
r Re дr дr r д<р r r д<р Re дr2 r дr r2 д<р2 r2 r2 д<р 

1 d (dur иr 1 du") +-- --+-+--
rd<p dr r r d<p 

(8.1) 

For ur: 

_ (ди" + иr) 
дr r 

+~ {(и __ 1_) [и диr +и" диr _и~+ др_..!._ (д2иr +.!:. дur + ..!:._ д2 иr _ иr _ ~ ди<р)]} 
дr r r Re r дr r д<р r дr Re дr2 r дr r 2 д<р2 r 2 r 2 д<р 
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For р: 

since 
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д (дur Ur 1 ди"') +- -+-+--
дr дdr r r д~ 
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(8.2) 

(8.3) 


