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Abstract

We explore the practicability of the Method of Variational Imbedding (MVI) for identi�cation the coeÆcient in

ordinary di�erential equation from over-posed boundary data. The inverse problem is replaced by the higher{order

boundary value problem for the Euler equations for minimization of the quadratic functional of the original system.

The imbedding problem is correct in the sense of Hadamard and consists of an explicit equation for the unknown

coeÆcient. The existence and uniqueness of solution of the imbedding problem is demonstrated and a di�erence

scheme is proposed for its numerical solution. The performance of the technique is demonstrated for three di�erent

problems. Comparisons with the \direct" and \inverse" solutions where available are quantitatively very good.

Relevant numerical examples are included.
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1 Introduction

Most mathematical problems in science, technology and medicine are inverse problems, which often are ill-posed in

the sense of J. Hadamard [7]. The optimization of technological processes and identi�cation of material properties

yields as a rule mathematical problems in which initial or boundary conditions are missing (or overdetermined) while

additional information is available for the supposed solution (or additional unknown functions are present). According

to [1] \an initial-boundary-value problem is inverse if some information on the initial and/or boundary conditions

needed for solution or/and on the parameters that characterize the model are missing and are replaced by suitable

information on the solution of the mathematical problem".

The work of Hadamard spurred signi�cant activity for creating regularizing procedures (see, e.g., [10]) for the

problems that are incorrect in the sense of Hadamard, e.g., for smoothing the data in order to evade the instability

provoked by the pollution of the data. Such an approach has an important implication for the practical problems.

At the same time the very notion of replacing the ill-formulated (e.g. ill-speci�ed and inverse) or ill-posed by a

well-formulated mathematical problem is of not lesser importance. Indeed, if one succeeds in doing so one arrives at

a problem that is also correct in the sense of Hadamard and then it is automatically regularizing the data if some

pollution is present. To this end the Method of Variational Imbedding was proposed by the second author. The

idea of MVI is to replace an incorrect problem with the well-posed problem for minimization of quadratic functional

of the original equations, i.e. we \embed" the original incorrect problem in a higher-order boundary value problem

which is well-posed. For the latter a di�erence scheme and numerical algorithm for its implementation can easily be

constructed.
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The �rst application of MVI was for identi�cation of localized solutions (homoclinics of Lorenz system) [2]. Later

on it was applied also to the more complicated case of homoclinics and heteroclinics [3] of Kuramoto-Sivashinsky

equation. Note that the MVI does not require introduction of higher-order derivatives multiplied by arti�cial small

parameter as it is the case with \quasi-reversibility method" [10, 8]. In the recent authors' work [6] a di�erence

scheme and algorithm are created to apply MVI to the classical problem of identi�cation of heat-conduction coeÆcient

as function of the spatial coordinate from overdetermined boundary data which are functions of time. The most

straightforward application of MVI for identi�cation of boundary-layer thickness is proposed in [5] where the equation

for the longitudinal component of the velocity is treated separately as a parabolic equation with unknown coeÆcient

and the continuity equation is added in an explicit manner.

2 Posing the problem

Consider the one-dimensional problem:

Au =
d

dx

�
�
du

dx

�
= f(x)(1)

u(0) = �0; u(1) = �1;(2)

u
0(0) = �0; u

0(1) = �1:(3)

If the coeÆcient � is given the problem (1), (2), (3) is over-posed, i.e. for arbitrary f(x), �, �0, �1, �0 and �1,

there may be no solution u(x) satisfying all of the conditions (2) and (3). On the other hand, when

�(x) =

�
c1 = const for 0 < x < �0

c2 = const for �0 < x < 1
:(4)

where c1 and c2 are not known a priori and the point �0 is given, then under certain conditions it may be possible to

�nd a coeÆcient �(x) such that the problem (1) has a unique solution u(x) and this solution also satis�es (2) and (3).

In this case we say that the pair of functions (u; �) constitute a solution to the inverse problem (1), (2) and (3).

3 Variational imbedding

Following the MVI we replace the original problem by the problem of minimization of the functional

I(u; �) =

1Z
0

[Au]
2
dx =

1Z
0

�
d

dx

�
�
du

dx

�
� f(x)

�2
dx! min ;(5)

where u must satisfy the conditions (2), (3) and � must be composed from two unknown constant (the break-point is

known). Functional I is a quadratic and homogeneous function of Au and hence it attains its minimum if and only

if Au � 0. In this sense there is one-to-one correspondence between the original equation (1) and the minimization

problem (5).

The necessary condition for minimization of (5) are the Euler(-Lagrange) equations for the functions u(x) and �.

The equation for u reads
d

dx
�
d

dx

�
d

dx

�
�
du

dx

�
� f(x)

�
= 0(6)

This equation is of fourth order and its solution can satisfy the four conditions at the boundaries. In this reason the

problem (6), (2), (3) is well-posed if coeÆcient � is given.

The problem is coupled by the equation for �. The interval (0; 1) is split into two parts (0; �0) and (�0; 1). In the

each of them
d

dx
�
d

dx
� �

d2

dx2
;(7)

which is not true in the whole interval. This allow us to write the functional (5) in the next form

I =

0
@

�0Z
0

(u00)2dx

1
A c

2
1 �

0
@2

�0Z
0

u
00
fdx

1
A c1 +

0
B@

1Z
�0

(u00)2dx

1
CA c

2
2 �

0
B@2

1Z
�0

u
00
fdx

1
CA c2 +

0
@

1Z
0

f
2dx

1
A ;(8)
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The essence of the MVI in the problem under consideration is the equation for �, which after fairly obvious manipu-

lations involving adopts the form:

c1 =

�0R
0

u
00
fdx

�0R
0

(u00)2dx

; c2 =

1R
�0

u
00
fdx

1R
�0

(u00)2dx

:(9)

4 Existence and uniqueness of solution

Let us consider now the space H([0; 1]) comprised by the functions �(x) which are de�ned for all x 2 [0; 1] and satisfy

the following conditions

�(0) = �
0(0) = �(1) = �

0(1) = 0 ;(10)

The following scalar product is introduced in H([0; 1])

[�; �] =

1Z
0

�
d

dx
�
d�

dx

��
d

dx
�
d�

dx

�
dx :(11)

The equation (11) is a scalar product since

[�; �] =

1Z
0

�
d

dx
�
d�

dx

�2

dx = c
2
1

�0Z
0

�
d2�

dx2

�2

dx+ c
2
2

1Z
�0

�
d2�

dx2

�2

dx(12)

and the only solution of the Cauchy's problems

�
d2�

dx2
= 0 ; �(0) = �

0(0) = 0 ; for x 2 [0; �0] ;(13)

�
d2�

dx2
= 0 ; �(1) = �

0(1) = 0 ; for x 2 [�0; 1] ;(14)

is the trivial one, i.e. [�; �] = 0 is true only when �(x) � 0.

The space H([0; 1]) with scalar product (11) is a Hilbert space.

Let us introduce the suÆciently times di�erentiable functions �(x) de�ned for x 2 [0; 1] and satisfying the boundary

conditions (2), (3). Then, a generalized solution of (6), (2), (3) is called any function u for which the following expression

holds true

[u;�] =

1Z
0

�
d

dx
�
d�

dx

��
d

dx
�
du

dx

�
dx = �

1Z
0

�
d�

dx

df

dx
dx(15)

for all � 2 H([0; 1]) and (u � �) 2 H([0; 1]). It is easily seen that the classical solution of (6), (2), (3) is also a

generalized solution. We multiply equation (6) by � and integrate over the domain [0; 1] to obtain

0 =

1Z
0

�

�
d

dx
�
d

dx

�
d

dx

�
�
du

dx

�
� f(x)

��
dx

=

�
��

d

dx

�
d

dx

�
�
du

dx

�
� f(x)

������
1

0

�

1Z
0

�
d�

dx

�
d

dx

�
d

dx

�
�
du

dx

���
dx+

1Z
0

�
d�

dx

df

dx
dx

=

�
d(��)

dx

d

dx

�
�
du

dx

������
1

0

+

1Z
0

�
d

dx
�
d�

dx

��
d

dx
�
du

dx

�
dx+

1Z
0

�
d�

dx

df

dx
dx = [u;�] +

1Z
0

�
d�

dx

df

dx
dx(16)

where the boundary conditions for � 2 H([0; 1]) are acknowledged.

The existence of a generalized solution follows from the Riesz Theorem because, as has been above shown, (11)

de�nes a scalar product and therefore a functional.
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Figure 1: The mesh

In order to prove the uniqueness we consider the di�erence û = u1 � u2 between two supposed solutions. It is

obvious that û 2 H([0; 1]). On the other hand equation (15) holds also for u1 and u2 and for the di�erence û we

obtain [û;�] = 0. Then taking simply � � û we have [û; û] = 0 and then û � (0; 0).

So far, it has been shown that the Euler equation (6) possess a unique solution under the boundary conditions (2),

(3), provided that � is given.

If the function u is given then the existence and uniqueness of solution of equations (9) is obvious.

It has already been shown that each of the equations (6), and (9) possesses a unique solution, when the other

function is thought of as known. Hence the system (6), (9) has a unique solution. Thus the functional J has a

stationary point because the equations (6) and (9) are necessary conditions for existing of a stationary point of a

functional. On the other hand, the quadratic functional J is convex and this unique stationary point is the global

minimum of the functional.

So far, we have proved the correctness of the linearized problem. The solution of the full nonlinear problem is

obtained by means of iterations after replacing � or u with the function calculated at the previous iteration.

5 Di�erence Scheme

We solving the above fourth-order boundary value problem with �nite di�erences. The mesh (see Figure 1) is a regular

and allow to approximate all operators with standard central di�erences with second order of approximation. It is

important fact that the break-point �0 must be one of grid-points.

For the grid spacing we have h � 1

n�3
; where n is the total number of grid points. Then the gird points are de�ned

as xi = (i � 2)h for i = 1; : : : ; n. Let us introduce the notation ui = u(xi) and �i = �(x) for xi � x < xi+1. We

employ symmetric central di�erences for approximating the di�erential operator of forth order as follow:

d

dx
�
d2

dx2
�
du

dx

���
x=xi

=
1

h4
[�i�2�iui�2 � (�i�2�i + 2�i�1�i + �i�1�i+1)ui�1

+(2�i�1�i + �
2
i + �i�1�i+1 + �i�1�i+1)ui �(�

2
i + 2�i�i+1 + �

2
i+1)ui�1 + �

2
i+1ui+2

�
+O(h2)(17)

for i = 3; : : : n� 2. The boundary conditions (2), (3) are approximated with second order.

The �ve{diagonal system is solved by means of a specialized solver [4] which is a generalization of what is called

Thomas algorithm in the English-language literature or \progonka" in the Russian-language one.

In order to gather \experimental" data for the �0 and �1 from boundary condition (3) we solve numerically the

\direct" problem (1), (2) with given f(x) and �. On the same mesh (see Figure 1) we approximate the second order

di�erential operator as follow:

d

dx
�
du

dx

���
x=xi

=
1

h2
[�i�1ui�1 � (�i�1 + �i)ui + �iui+1] +O(h2)(18)

for i = 2; : : : n� 1. The solution algorithm allows for complete coupling of the boundary conditions (2).

General consequence of algorithm:

(I) With the obtained \experimentally observed" values of the �0 and �1 the fourth-order boundary value problem

(6), (2), (3) is solved for function u.

(II) The current iteration for the � is calculated from (9). If the di�erence between the new and old �eld for � is less

than "0 then the calculations are terminated, otherwise return to (I) with the new �.
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Figure 2: Discretization error uinverse � udirect for three di�erent grid steps and the right{hand func-

tion f(x) = 12x2 and c1 = c2 = 1.

6 Numerical Experiments

To illustrate the numerical implementation of MVI we solve the \direct" problem for a given coeÆcient � and thus

we obtain self-consistent \experimental" over-posed boundary data (3). Then with the obtained in \experimentally

observed" values of the �0 and �1 the fourth-order boundary value problem is solved. The tests show that the program

works well then the jump in point �0 is not a great then 300% from minfc1; c2g. The accuracy of the developed here

di�erence scheme and algorithm are checked with the mandatory tests involving di�erent grid spacing h. We conducted

a number of calculations with di�erent values of mesh parameters and veri�ed the practical convergence and the O(h2)

approximation of the numerical solution.

In Figure 2 are shown the shapes of the di�erence between the numerical and the analytical solution (discretization

error) for three di�erent grid steps and the right{hand function f(x) = 12x2 and c1 = c2 = 1. It is easy to seen that if

�1 = 1 and �2 = 2 the solution is u(x) = 1+ x
4. The initial guess for this calculations is c1 = 1, c2 = 2 and u(x) � 1.

The values of constants c1 and c2 and number of iterations are given in a Table 1. It is well seen the fact that the

numerical solution approximate to analytical with O(h2). The next test is with the same right side

f(x) = 12x2; �0 = 0; �1 = 1; and � =

�
c1 = 1; 0 < x <

5

8

c2 = 2; 5

8
< x < 1

:(19)

The shapes of the di�erence between the 'direct' and the 'inverse' solution for three di�erent grid steps are shown in

Figure 3 a). The initial guess for this calculations is c1 = c2 = 1 and u(x) � 1. The last test is with right side and

boundary conditions

f(x) = 5 + 4e�x2 sin 20�x; �0 = 0; �1 = 1 and � =

�
c1 = 1; 0 < x <

5

8

c2 = 2; 5

8
< x < 1

:(20)

The pro�le of the di�erence between the 'direct' and the 'inverse' solution for three di�erent grid steps are shown in

Figure 3 b). The initial guess for this calculations is c1 = c2 = 1 and u(x) � 1.

Table 1: The values of constants c1 and c2 and the number of iterations for three di�erent grid

steps and the right{hand function f(x) = 12x2 and c1 = c2 = 1.

h c1 c2 iterations

analytical 1 1 |

1=32 0.9963126105943 0.9995121712033 201

1=64 0.9990776818529 0.9998779325057 226

1=128 0.9997691381823 0.9999694557608 240
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Figure 3: Discretization error for: a) f(x), �1 and �2 given in (19); b) f(x), �1 and �2 given in (20).

7 Conclusions

In the present paper we have displayed the performance of the MVI for solving the inverse problem of coeÆcient

identi�cation in ordinary di�erential equation from over-posed data. The original inverse problem is replaced by the

minimization problem for the quadratic functional of the original equation. The Euler equations for minimization

comprise a fourth-order equation for the solution of original equation and an explicit equation for the unknown

coeÆcient. For this system the boundary data is not over-posed. It is shown that the solution of the original inverse

problem is among the solutions of the variational problem. The \imbedding problem" possesses a unique solution

which means that when the imbedding functional is zero, the over-posed data is consistent and the solution of the

imbedding problem coincides with the sought solution of the inverse problem. Featuring examples are elaborated

numerically with di�erent coeÆcients. The numerical results con�rm that the solution of the imbedding problem

coincides with the direct simulation of the original problem within the truncation error O(h2).
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