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Abstract. We apply the Christov-Galerkin spectral method for the numerical investigation of the interaction of solitons in the Cubic
Nonlinear Schrödinger Equation. The issues of convergence are addressed and an algorithm is devised for the application of the
method. Results are obtained for the interaction of solitons with different phase velocities and different carrier frequencies. The
interactions are shown to be elastic, save for the phase shifts. The latter are extracted from the numerical solution and discussed.

INTRODUCTION

The nonlinear Schrödinger equation (NLSE) models many physical processes. Whilst the main application is in non-
linear optoelectronics (propagation of optical pulses in fibers), this equation is also used as a model to problems
in telecommunications, hydrodynamics, nonlinear acoustics, quantum condensates and many other nonlinear systems
such as material sciences, quantum chemistry and electronics. In particular, we are interested in the (1+1)-dimensional
Cubic Nonlinear Schrödinger Equation (CuNLSE). This equation has a prominent role in the theory of nonlinear
waves, modeling propagation in Kerr media, where the nonlinearity is proportional to the intensity of the field. In
nonlinear optics the CuNLSE describes the single-mode wave propagation in a fiber. These fibers allow propagation
of multiple orthogonally polarized modes, which may be described by a multi-component version of the CuNLSE
(see, e.g., [1]). A quick look at the development of the history of soliton theory, shows that the importance of the
CuNLSE is comparable with that of the Boussinesq and Korteweg-de Vries equations. If we consider more than one
space dimensions, the CuNLSE is not integrable, i.e., no Lax pair exists and no linear solution techniques are avail-
able. Similarly, the coupled (multi-component) system of Schrödinger equations is also non-integrable. The lack of
integrability in the predominant part of practically important models motivates the development of efficient, reliable
and robust numerical methods.

We are interested in physical boundary value problems in infinite domains which are pertinent to soliton theory.
These are the cases when no boundary conditions are specified, but rather the square of the solution is required to be
integrable on an infinite domain, that is, the solution belongs to L2(−∞,∞). We aim at calculating the solitary wave
solutions of the CuNLSE and examining the propagation and interaction of the modulo of the solutions.

In the literature, the currently available numerical methods for studying the CuNLSE in infinite domains focus on
finite difference or finite element methods, which could create several problems if one is not very careful. For example,
the inevitable reduction of the infinite interval to a finite one, introduces an artificial eigenvalue problem, the latter
being irrelevant to the original infinite spatial domain. Sometimes, the finite-domain problem has a solution only for
some enumerable set of intervals of specific length. It can even happen that each of the finite-domain approximations
only has a trivial solution, while the original problem possesses a nontrivial one, or vice-versa.
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The difficulties which occur when using finite differences or finite elements can be overcome if we use a spectral
method with a basis of localized functions which automatically satisfy the requirement that the solution belongs to
L2(−∞,∞) space. Here we make use of the complete orthonormal (CON) system of functions proposed in [2]. The
properties of this system were investigated further in [3, 4, 5]. These functions are orthogonal without weight and
possess an expression for the product of two members of the system into series with respect to the system.

The relevant formulas for the functions forming the CON system can be found in [6, 7, 8], where the Galerkin
technique was successfully applied to a host of equations admitting stationary propagating solutions of solitary-wave
type, e.g., Korteweg-de Vries (KdV), Kuramoto-Sivashinsky (KS) and Boussinesq with quadratic and cubic nonlin-
earities. Here, the method is developed further to the case when the sought function is complex-valued and modeled
by the CuNLSE.

THE CHRISTOV-GALERKIN METHOD IN L2(−∞,∞)

From the known spectral techniques, we choose the Galerkin method which has the advantage of simplicity in imple-
mentation in comparison with the spectral collocation method or tau-method (for other techniques, see, e.g., [9, 10]).
This is due to the availability of explicit formulas for the expansions of the derivatives of the basis functions into
members of the CON, a property which turns out to be crucial for constructing fast and efficient numerical algo-
rithms. Moreover, it is more accurate than pseudospectral techniques, because there is only error from the truncation
of the spectral series, and no discretization error. Naturally, for a large number of terms in the spectral expansions, the
Galerkin technique is less efficient than the pseudospectral one, because Fast Fourier Transforms (FFT) can be used
in the latter. However, when treating physical problems, Galerkin techniques can provide a more accurate approxima-
tion since the accuracy of pseudospectral methods depends on the number of collocation points. The only issue for
problems with power nonlinearities is that Galerkin techniques require explicit formulas expressing the products of
members of the CON system into series with respect to the system. For instance, the Hermite functions and Laguerre
functions do not possess that kind of explicit relation. The first system for which such a product formula exists was
proposed in [2]. A Galerkin technique based on the said system was developed in [11, 6] and applied to the KdV and
KS equations with quadratic nonlinearity. The same technique was also employed to numerically investigate problems
with cubic nonlinearity [7]. In a sequence of papers [3, 12], Boyd described a general method of constructing CON
systems in L2(−∞,∞) by means of coordinate transformations to a finite interval and use of Chebyshev polynomials
(see [9]).

The CON system we use in the present work was established by Christov [2] as the real and imaginary parts of
the Wiener functions

ρn =
1√
π

(ix − 1)n

(ix + 1)n+1
, n = 0, 1, 2, ... (1)

which were introduced by Wiener (see [13]), as Fourier transforms of the Laguerre functions (functions of parabolic
cylinder). Higgins [14] extended it to negative indices n and proved its completeness and orthogonality. The signifi-
cance of Eq. (1) for nonlinear problems was demonstrated in [2], where the product formula was derived and the two
real-valued subsequences of odd functions S n and even functions Cn were introduced, namely,

ρnρk =
ρn+k − ρn−k

2
√
π
, S n =

ρn + ρ−n−1

i
√

2
, Cn =

ρn − ρ−n−1√
2

. (2)

In [6], representation (3) for functions Cn(x) and S n(x) was demonstrated, showing their connection with the
Fourier functions sin x and cos x,

Cn(x) = (−1)n cos(n + 1)θ + cos nθ√
2

, S n(x) = (−1)n+1 sin(n + 1)θ + sin nθ√
2

, (3)

where x = tan( θ
2
) is the transformation of the independent variable. The importance of the connection to the periodic

functions was discussed in [4].

From [2] we obtain the double product formulas of Cn and S n expressed in series with reference to the system,
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namely,

CnCk =
1√
2π

[ Cn+k+1 −Cn+k −Cn−k +Cn−k−1] , (4)

S nS k =
1√
2π

[ Cn+k+1 −Cn+k +Cn−k −Cn−k−1] , (5)

S nCk =
1√
2π

[−S n+k+1 + S n+k + S n−k − S n−k−1] . (6)

Now, if we make use of Eqs. (2), (4), (5) and (6) one easily shows that the triple products of members are expanded
in series with respect to the system as follows (see [7]),

ClCnCk
def
=

∞∑
m=0

βlnk,mCm(x) , βlnk,m = δm,n+k+l+2 − 2δm,n+k+l+1 + δm,n+k+l (7)

− 2sgn(l − n − k − 0.5) δm,[|l−n−k−0.5|] − 2sgn(l − n + k − 0.5) δm,[|l−n+k−0.5|] − 2sgn(l + n − k − 0.5) δm,[|l+n−k−0.5|]
+ sgn(l − n − k − 1.5) δm,[|l−n−k−1.5|] + sgn(l − n − k + 0.5) δm,[|l−n−k+0.5|] + 2sgn(l + n − k + 0.5) δm,[|l+n−k+0.5|]
+ 2sgn(l − n + k + 0.5) δm,[|l−n+k+0.5|] − sgn(l + n − k + 1.5) δm,[|l+n−k+1.5|] − sgn(l − n + k + 1.5) δm,[|l−n+k+1.5|] ,

where [a] stands for the largest integer number smaller than a and δ is the Kronecker delta-function. In like fashion,

S lS nS k
def
=

∞∑
m=0

αlnk,mS m(x) , αlnk,m = −δm,n+k+l+2 + 2δm,n+k+l+1 − δm,n+k+l (8)

+ 2δm,[|l−n−k−0.5|] − δm,[|l−n+k−0.5|] − δm,[|l+n−k−0.5|] − δm,[|l−n−k−1.5|] − δm,[|l−n−k+0.5|]
+ 2δm,[|l+n−k+0.5|] + 2δm,[|l−n+k+0.5|] − δm,[|l+n−k+1.5|] − δm,[|l−n+k+1.5|] ,

S lS nCk
def
=

∞∑
m=0

γ̄lnk,mCm(x) , γ̄lnk,m = −δm,n+k+l+2 + 2δm,n+k+l+1 − δm,n+k+l (9)

− 2sgn(l − n − k − 0.5) δm,[|l−n−k−0.5|] − sgn(l − n + k − 0.5) δm,[|l−n+k−0.5|] + sgn(l + n − k − 0.5) δm,[|l+n−k−0.5|]
+ sgn(l − n − k − 1.5) δm,[|l−n−k−1.5|] + sgn(l − n − k + 0.5) δm,[|l−n−k+0.5|] − 2sgn(l + n − k + 0.5) δm,[|l+n−k+0.5|]
+ 2sgn(l − n + k + 0.5) δm,[|l−n+k+0.5|] + sgn(l + n − k + 1.5) δm,[|l+n−k+1.5|] − sgn(l − n + k + 1.5) δm,[|l−n+k+1.5|] ,

S lCnCk
def
=

∞∑
m=0

¯̄γlnk,mS m(x) , ¯̄γlnk,m = −δm,n+k+l+2 + 2δm,n+k+l+1 − δm,n+k+l (10)

+ 2δm,[|l−n−k−0.5|] + δm,[|l−n+k−0.5|] + δm,[|l+n−k−0.5|] − δm,[|l−n−k−1.5|] − δm,[|l−n−k+0.5|]
− 2δm,[|l+n−k+0.5|] − 2δm,[|l−n+k+0.5|] + δm,[|l+n−k+1.5|] + δm,[|l−n+k+1.5|] .

For the second derivative of the basis functions one has (see [2])

C′′n =
∞∑

m=0

χm,nCm , S ′′n =
∞∑

m=0

χm,nS m , (11)

χm,n = −1

4
n(n − 1)δm,n−2 + n2δm,n−1 − 1

4
(n + 1)(n + 2)δm,n+2 − 1

4
n2 + (2n + 1)2 + (n + 1)2δm,n + (n + 1)2δm,n+1. (12)

It is important to note that the matrices representing the derivatives of the basis functions in spectral space are
multidiagonal, further enhancing the computational efficiency of the developed here technique. The positive definite-
ness of matrix χnm and the bounds on its eigenvalues were shown in [4]. These properties are essential for constructing
the implicit scheme employed here.

A very important characteristic of a spectral method is its rate of convergence. Since there is a connection with
the Fourier functions (see Eq. (3)), which are known to have exponential convergence, we can infer the exponential
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convergence of the spectral series for the functions Cn and S n. In [9], a detailed discussion can be found about
the actual convergence rate, which while still being exponential, may turn out to be sub-geometric. Extending the
arguments from [9], one expects sub-geometric convergence because of the fact that the CON system has algebraic
decay at infinity, while the actual behavior at infinity of the sought solution may be different. This creates a subtle
mismatch between the behaviors of the CON system and the solution that can result in a slower convergence rate.
Nonetheless, the important claim here is that the convergence is exponential because even sub-geometric convergence
is fast enough for most practical purposes. As it is shown in what follows, the convergence rate for the solitons
considered here is actually geometric.

POSING THE PROBLEM

In what follows we focus on the CuNLS equation with a linear potential term namely,

i ut + uxx + |u|2u + κ u = 0, (13)

and we use κ = 1 in actual numerical computations. Guided by the way an analytic steady solution is found for the
NLS without the linear potential, we seek a soliton solution of CuNLS in the form of an envelop solution

u(x, t) = Aeiθ exp

[
i

(
1

2
c(x − ct) + ηt

)]
sech[a(x − ct)], (14)

where A and a are unknown. The phase speed c, the carrier frequency η of the underlying wave, and the phase θ are
prescribed in advance. Upon introducing the last expression in Eq. (13) we render the latter to

A
(

1

4
c2 − η + a2 + κ

)
sech[a(x − ct)] + (A3 − 2Aa)sech3[a(x − ct)] = 0. (15)

This equation is satisfied for

a =

√
η − 1

4
c2 − κ, A = ±√2a. (16)

We seek a solitary-wave solution of Eq. (13) which approaches zero as x→ ±∞ and hence all its derivatives decay
automatically at zero. When treating the problem analytically one may also impose asymptotic boundary conditions
on the second, third, etc. derivative. These are corollaries from the original b.c and are called asymptotic boundary
conditions (a.b.c.), namely

u(x, t) = u′(x, t) = ...→ 0, for x→ ±∞. (17)

We also mention that re-scaling the spatial variable x does not change the nature of the asymptotic boundary value
problem in L2(−∞,+∞). Upon introducing z = ζx we recast (13) as

i ut + ζ
−2uzz + |u|2u + κu = 0 with a.b.c u(z, t)→ 0, for z→ ±∞. (18)

The scaling parameter ζ can be used to optimize the method in the sense that its introduction allows one to bring in
concert the typical length scales of the employed system of functions in accordance with the support of the sought
localized solution. Naturally, such a coordination between the scales will result in a faster convergence rate of the
Fourier-Galerkin series.

For the time-dependent problem we use as initial condition the superposition of two analytical solutions of type
Eq. (14), each of them with its own intrinsic parameters ci, ηi, θi (i = 1, 2). Based on formulas Eq. (16), the respective
values of ai are calculated. We consider the two sech-es at positions Xi, and |X1 − X2| � 1, so that they do not interact
at the initial moment of time t = 0. If this is the case, a mere superposition of two one-soliton solutions approximates
the respective two-soliton solution very well. Thus,

u0(z, t) =
√

2a1 exp

[
i

(
1

2
c1(z/ζ − c1t) + η1t + θ1

)]
× sech

[
a
(

z
ζ
− X1 − c1t

)]

+
√

2a2 exp

[
i

(
1

2
c2(z/ζ − c2t) + η2t + θ2

)]
× sech

[
a
(

z
ζ
− X2 − c2t

)]
. (19)
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SPECTRAL EXPANSION AND ALGORITHM

For the solution of system (18) we choose a semi-implicit time-stepping scheme of Crank-Nicolson type for the linear
terms and explicit approximations for the nonlinear term,

i
un+1 − un

τ
+
ζ2

2
[un+1

zz + un−1
zz ] + un|un|2 + κ

2
[un+1 + un−1] = 0, (20)

where tn = t + nτ and τ is the time increment. We develop the sought solution u into series with respect to the
subsequences Cn and S n, namely,

un(z) =

∞∑
n=0

an
mCm(z) + bn

mS m(z), (21)

where the coefficients am and bm are complex. Then, for the coefficients of the even and odd functions we have
respectively

i
al+1

m − al
m

τ
+
ζ2

2

∞∑
k=0

(
al+1

k + al−1
k

)
χm,k +

κ

2

(
al+1

m +al−1
m

)
= −

∞∑
k1=0

∞∑
k2=0

∞∑
k3=0

(
al

k1
|al

k2
||al

k3
|βk1k2k3,m

+al
k1
|bl

k2
||bl

k3
|γ̄k1k2k3,m + 2bl

k1

(
Re(al

k2
)Re(bl

k3
) + Im(al

k2
)Im(bl

k3
)
)
γ̄k1k2k3,m

)

i
bl+1

m − bl
m

τ
+
ζ2

2

∞∑
k=0

(
bl+1

k + bl−1
k

)
χm,k +

κ

2

(
bl+1

m +bl−1
m

)
= −

∞∑
k1=0

∞∑
k2=0

∞∑
k3=0

(
bl

k1
|bl

k2
||bl

k3
|αk1k2k3,m (22)

+bl
k1
|al

k2
||al

k3
| ¯̄γk1k2k3,m + 2bl

k1

(
Re(al

k2
)Re(bl

k3
) + Im(al

k2
)Im(bl

k3
)
)

¯̄γk1k2k3,m

)
.

In the above formulas, β, α, γ̄, and ¯̄γ are given in Eqs. (7), (8), (9), and (10), respectively. In the numerical calculations
we truncate the above systems to, say N, which means that we solve in each case N + 1 equations for the N + 1
unknowns C0,C1, . . . ,CN or S 0, S 1, . . . , S N , respectively.

The initial conditions for the Fourier-Galerkin coefficients {a0
n}, {b0

n} and {a1
n}, {b1

n} are calculated for t = 0 and
t = τ by means of numerical quadrature of the analytical formulas after multiplying them by Cn or S n and using
numerical quadratures to obtain the coefficients of the Fourier-Galerkin series. For the inversion of the pentadiagonal
matrix, we used an algorithm based on Gaussian elimination with pivoting developed in [15].

CONVERGENCE AND VALIDATION OF ALGORITHM

As we have already mentioned, the convergence rate of the Galerkin series with the chosen here CON system is
exponential. It is important to verify that we actually obtain this convergence rate numerically. We explore this property
of the CON systems by taking a close look at the way a superposition of two solitons is expanded into series. As
featuring examples we take two cases. The first case is of two equal solitons with phase speeds c1 = −c2 = 2.5
situated relatively far from each other, X1 = −10, X2 = 10. The second case involves two nonequal solitons with phase
speeds c1 = 2.5, c2 = −1.0 situated closer at X1 = −6, X2 = 6. The respective profiles of the superposition of the
solitons are expanded into the CON system using numerical quadratures with 100, 000 grid points. This ensures that
the truncation error of the numerical quadrature is negligible. The number of points is more important here than in the
case of sech solitons, because now the profiles are oscillatory pulses whose envelope is the smooth function sech.

Figure 1 presents the behavior of the coefficients for the real and imaginary parts of the initial condition for
the first of the above described cases. The absolute values of the computed even coefficients and the best-fitting
exponential functions are plotted for three different values of the scale ζ. Table 1 gives the numerical values of best-fit
exponents for different ζ’s. The important observation is that the convergence is not just exponential, but is actually
geometric. It is clearly seen that there is an optimum at ζ = 0.2 for which value the convergence is faster (the most
negative exponent of the best-fit line). The optimal value of ζ is connected with the distance between the two pulses,
because when the latter are situated farther from each other, the characteristic length of the superposition is larger.
Since ζ is related to the inverse of the characteristic length, a larger distance between the pulses entails smaller ζ.
This is demonstrated in Figure 2 and in Table 2 where the results for the second case (the tighter initial configuration)
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FIGURE 1. Decay rate of the Galerkin coefficients for c1 = −c2 = 2.5 and X1 = −10, X2 = 10. Left panel: real part. Right panel:
imaginary part

TABLE 1. Best-fit formulas for the exponential convergence rate.

ζ Even Coefficients for p(x, t) Even Coefficients for r(x, t)
(left panel of Figure 1) (right panel of Figure 1)

0.5 0.75 exp (−0.048n) 0.75 exp (−0.049n)

0.2 0.7 exp (−0.103n) 0.35 exp (−0.103n)

0.088 0.7 exp (−0.13n) 0.088 exp (−0.13n)

0.07 0.7 exp (−0.125n) 0.1 exp (−0.122n)

TABLE 2. Best-fit formulas for the exponential convergence rate.

ζ Even Coefficients for p(x, t) Even Coefficients for r(x, t)
(left panel of Figure 2) (right panel of Figure 2)

0.7 0.75 exp (−0.07n) 0.75 exp (−0.068n)

0.5 0.7 exp (−0.093n) 0.7 exp (−0.091n)

0.2 0.7 exp (−0.16n) 0.7 exp (−0.155n)

0.1 0.25 exp (−0.14n) 0.1 exp (−0.136n)

are showed. Clearly, the tighter initial configuration (smaller support of the superposition) requires larger ζ for best
convergence.

Note that the results presented in Figures s1, 2 are scaled by the maximal values of the respective coefficients,
the best-fit curves have different amplitudes. Similar results and comparisons were obtained and made and for the
coefficients of the odd functions of the system. The findings are the same as for the even coefficients.

In this paper, we consider systems of solitons that are well separated (in order not to overlap significantly), but
that are not very far from each other in order not to loose the localization). In each particular case the investigation
begins with choosing the optimal ζ. After extensive numerical experiments we found that for X2−X1 = 20 the optimal
value for the scaling parameter is in the interval ζ ∈ [0.1, 0.3] and for the case X2 − X1 = 12, the optimal interval is
ζ ∈ [0.4, 0.6]. Since in the initial moments the solitons are separated by the largest distance, we can use the initial
profile to tune the parameters of the method before starting the actual calculations.
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FIGURE 2. Decay rate of the Galerkin coefficients for c1 = 2.5, c2 = −1.0 and X1 = −6, X2 = 6. Left panel: real part. Right panel:
imaginary part

RESULTS AND DISCUSSION

As was already mentioned in a previous section, the amplitude of the localized wave, for both the real and imaginary

parts, is A =
√

2a = ±
√

2(η − 1
4
c2 − κ). We examined several cases for different values of the parameters η and c.

For the purposes of the current work, we fixed η and varied the phase speed c. We only consider localized waves with
positive amplitude because the minus sign merely corresponds to a change in the initial phase.

Before proceeding to the presentation of the results, we mention here that an extensive set of numerical experi-
ments has been conducted in order to outline the interval for the time increment τ in which the spectral solution has a
satisfactory approximation and is stable. Because of the strongly implicit character of the scheme we were able to use
very large time steps up to τ = 0.1, but chose in most cases τ < 0.01 based on considerations for better approximation
of the time-dependent problem.

The next important question is whether coefficients behave well as functions of time. Due to the inevitable round-
off errors, after thousands of time steps, one can expect accumulation of error, especially in the coefficients with large
numbers whose values are quite close to the round-off error limit. Our calculations show that the round-off error never
spreads up the spectrum to coefficients that are larger than 10−5. In fact, when the total number of coefficients, N is
large enough, the round-off error does not spread to coefficients that are larger than 10−7. This means that the error
introduced in the calculated function is practically undetectable.

Generally speaking, it is possible that for larger times, the round-off error can spread to coefficients with smaller
numbers, but then the solitons will be so far from each other that the very concept of approximating them with
localized functions will become questionable. This means that for the time intervals of interest (when the solitons still
interact with each other), the Galerkin technique proposed here is fully adequate. Indeed, no visible distortion of the
wave profiles is observed in Figure 3 for the case of two equal phase speeds c1 = −c2 = 1. Smaller phase speeds mean
larger-amplitude solitons, hence for this case the nonlinearity is much more pronounced compared to the previously
considered c1 = −c2 = 2.5. The results show that even here, the technique performs very well.

As another featuring example, we consider solitons with different phase speeds: c1 = 3 and c2 = −1 (see Figure4).
In all of the above presented cases, the shapes and the energies of the solitons are preserved with high order of

accuracy upon their collisions. Note that even the slightest but persistent “leakage” of energy during the calculations
would have led to eventual linear dispersion of the solution and disappearance of the permanent shapes.

Finally, we focus our attention on the phase shift experienced during the interaction of two or more solitons. The
phase shift experienced by a soliton during the collision with another one, is the difference in the actual position of the
soliton and the position it would have had reached if no other solitons were present. To further investigate the issues
connected with the phase shifts, we conducted a number of numerical experiments and obtained results for the phase
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FIGURE 3. Interaction of solitons for c1 = −c2 = 1
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FIGURE 4. Interaction of solitons for c1 = 3 and c2 = 1

shifts for different initial configurations of the solitons. A selection of phase shifts is presented in Tables 3. In the first
four columns we present the phase shifts obtained for solitons with the same initial carrier frequencies, ηi. The case
with different carrier frequencies is presented in the last four columns of the table.

TABLE 3. Numerically identified phase shifts δi

η1 = η2 = 2.0 η1 = 2.0, η2 = 3.0

c1 δ1 c2 δ2 c1 δ1 c2 δ2

1.95 3.92 -0.65 3.2 3.2 2.4 -2.0 0.89

0.65 4.64 -0.65 4.64 3.2 3.36 -3.2 1.84

1.95 3.76 -1.95 3.76 2.0 3.04 -2.0 2.56

The qualitative behavior of the phase shifts is in agreement with the other soliton models, such as Boussinesq
and Korteweg-de Vries equations, namely the larger soliton experiences a smaller phase shift after the interaction.
Indeed, we see from the table that the solitons with smaller phase shifts (i.e., with larger amplitude) are shifted less.
An interesting observation here is related to the role of the carrier frequency. As we can see from the second part of
the table, increasing the value of the carrier frequency decreases the magnitude of the phase shift experienced by the
respective soliton with all other conditions kept the same.

It is important to note that the accurate representation of the phase shifts demonstrates that in the framework of
the spectral approximation of the spatial terms, the second-order approximation in time produces almost insignificant
phase error. Note that this is not the case with finite difference approximations where the temporal approximation
results in somewhat larger phase error.
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CONCLUSIONS

The Christov-Galerkin spectral technique was extended to complex arithmetics. A numerical scheme implementing
the technique was developed and used to investigate the time-dependent problem of soliton interactions for the Cubic
Nonlinear Schrödinger Equation. It was found that the computed shapes and energies of the solitons were preserved
with high-order accuracy upon their collisions. Futhermore, the convergence rate of the spectral series was found to
be geometric. The current results suggest the application of the method to the cubic-quintic nonlinear Schrödinger
equation, which models many problems of physical interest.
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