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ABSTRACT 

We show that the well posed continuous model repreeentins the physically appro
priate dispersion relation for a discrete lattice must contain hisher-order deriva.
tives in space. A stronsly implicit conservative difference scheme is desisned 
for eolvins the resultins seneralized Bouuineeq equation and the very-Ions-time 
evolution and multiple interactione of localized eolutione are inveatisated. The 
calculatione verify that the hump-shaped localized eolutione of eec:h-type are soli
tons . However, for phase velocities that are not close enoush to the characteristic 
velocity the eec:hs evolve into pulses of localized envelopes. Althoush the pulses 
are not stationary creatures, they can still be called solitons because the enerlf 
and pseudomomentum are perfectly conserved in the course of interaction . 
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In recent years a. marked interest has developed among metallurgists, applied 
physicists and mathematicians for the continuous or discrete study of changes in the 
structure of martensitic alloys and ferroela.stic materials. In the discrete description, 
we note the works [1J,[2J,[3J which consider initially a. lattice dynamics approach in 
one space dimension accounting either for the principal shear deformation alone 
(lJ or for both shear and longitudinal deformations (3J, although the latter plays a 
secondary role only. FUrther works (4J ,(5J account in a. more satisfactory way for 
lthe material symmetry typical of the phases of these materials and various types of 
interparticle interactions. 
I 

fl. Posing the Problem 
! 
) In terms of relative transverse displacements (shear) S; of atoms in a lattice, 
the governing equation has the following form (3J: 

S; = x(Si+J - 2S; + si+J) + [F(Si+J)- 2F(S;) + F(S;-dl 

- b'(Si+:z- 4Si+1 + 6S;- 4S;- 1 + S;- 2 ) , 
(1) 
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where F( S) is the particular nonlinearity of the problem. Respectively x is 
proportional to the square of the characteristic speed in the crystal and 6 controls 
the triple interactions. The Tailor-series for the strain in the vicinity of point :r; 
give 

2 " a" (4) as (6) a8 (8) a10 (10) 
(Si+1 - 2S; + S;-1) =a S; + 

12
s; + 

360
S; + 

20160
S; + ,oHAnnSi 

6 8 17 10 
(Si+2 - 4S; + 6S;- 4S;-1 + S;-2) = a4 s<•l + ~s<6l + ~s<8l + _a_S~10l 

I 6 I 80 I 30240 I 

and hence 

S11 = a
2 xS.,, + a

4
( ~ - 6)S.,. + a

6
( 3~0 - ~ )S.,e + · · · · (2) 

It is clear that the fourth-order Generalized Wave Equation (GWE) would be 
proper iff 6 > fi, which is hardly the practically important situation. It is the 
sixth-order GWE which is of practical interest since it is well-posed for 6 < ~- The 
eight-order GWE is similar to the fourth-order one with the only difference that the 
limitation is not so restrictive, namely 6 > 2h, but still well above the practical 
range of parameters. The tenth-order GWE should be used only for very large 6 
since they are limited there only by ¥;-. We content ourselves with the sixth-order 
GWE for which the coefficient before the fourth derivative is positive securing the 
physically acceptable curvature of the dispersion relation (see (3)). After re-scaling 
the variables, we arrive at the following equation for the transverse strain 

2 cP F(u) dU(u) 
Utt = "Y Uzz + ~ -fJUuu+Uzuzn 1 F(u) := -~. (3) 

In what follows we call Eq.(3) Sixth-order Generlized Boussinesq (SGB- for 
brevity). The same equation was considered in (11] in a fluid dynamics context . 

2. Pseudomomentum Formulation 

Equation (1.10) is an obvious corollary of the following system 

Ut = qzz;, qt = ""(2U + F(u)- {Jw + Wu , w = Uzz . (4) 

Different kinds of boundary conditions (b.c. - for brevity) can be imposed. 
On a finite interval (-L1, L2] , however, the system ( 4) admits conservation laws, 
only for the following b.c. 

U = 0 1 Uz = 0, q., = 0 

Consider now the quantities 
L, 

for :r = -L1,L2, (5) 

L, del/ d M= u:r, 

L, del/ d P = uq., :r, E ~1 ~~ ["Y2u2 + q~- 2U(u) + {Ju~ + w 2 ]d:r . (6) 

- L, -L, -L, 

).- · 

f_.! 

•' 

~~ 
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Upon an appropriate manipulation of system ( 4), integrating with respect to 
:r and acknowledging the appropriate b.c from (5), one obtains the following con
servation and balance laws (see the similar derivation in (6],(7] for the fourth-order 
BE): 

dM =0, 
dt 

dP _ ! [u2 ] :: F , I
L, 

dt- 2 u -L, 
dE =O. 
dt 

{7) 

Here M has an obvious interpretation ·as the mass of wave. Following [8],[9] 
we call P pseudomomentum, and F - pseudoforce. Although in [8] a quantity 
similar to E is called energy, we prefer to use the safer coinage pseudoenergy 
because of the higher-order spatial derivatives. 

In the present paper we consider only the case of quadratic nonlinearity 
F(u) = -ou2. However, any other kind of algebraic nonlinearity (cubic, quintic, 
etc.) can be treated in absolutely the same manner as in what follows . 

3. Difference Scheme 

Let us introduce a regular mesh :r; = -L1 +(i -l)h, h = (L1 +L2)/(N -1), 
where N is the total number of grid points. Following (7] we construct an implicit 
difference scheme which conserves mass and pseudoenergy. 

n,l n n,l + n n,l n,l-1 + n,l n + { ")2 
q . -q· ~u - U · U · U · U · U · U · 

I I = i~ I I _ Q I I I I I 

T 2 3 

fJ 1 n,l 2 n,l + n,l n 2 n + n 
( 

n,l ") [wi+1 - W; W;-1 wi+1 - W; Wi-1] -2 W; + W; + 2 h2 + h2 

(8) 

n,l n 1 n,l 2 n,l + n,l n 2 n + n 
U; - U; = _ [qi+1 - q; qi - 1 qi+l - q; qi-1] 

2 L2 + L2 
(9) 

n,l n 1 
w?•l- ui+1 - 2u ·' + u"·l 

I -
1 

I I 
h2 

{10) 

with b .c. 
n,l _ n,l _ n,l n,l _ n,l n,l _ n,l n,l _ n,l n,l _ 0 {11) 

UN - U1 -UN - UN-1 - U2 - U1 - qN - qN-1 - q2 - q1 - . 

The multidiagonal system is treated by the solver, developed in JIOJ. The "inner" 
iterations are conducted starting from the "initial" conditions u?' = u;', q;•0 = q;', 
and are terminated at a certain k = K after the following criterion is satisfied 
max (u?'K- u?'K - 11 :::; 10-11 max (u?'K [. After the inner iterations have converged 
one obtains, in fact, the solution of the non-linear conservative difference scheme 
for the "new" time stage, namely u;•+1 = u?'K 
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Similarly to the way it is done in (7], it can be shown that appropriate dif
ference approximations M , C of the mass and pseudoenergy are conserved by the 
difference scheme (8 )-(10) in the sense that M"+ 1 = M" , and cn+t = C" . A 
conservative scheme is obviously stable if the inner iterations converge. 

4. Results and Discussion 

We set for definiteness a = -3,1 = 10. Our first objective is the head-on 
collision of two sechs. It is easily verified that the analytical solution found in (11) 
for a FKdV is also a solution of SGB, namely 

u = 105 /3
2 

sech4 (:_ {if) 
169 2a 2 V i3 ' 

I 36 a2 
and lei= V 1 2

- 169~-' ' (12) 

where c is the phase velocity or celerity of the wave. The above solution exists 
only for positive /3 . 

In Fig .1 is presented the head-on collision of two sechs. The soliton in
teraction is perfectly elastic and the difference approximations M and £, are 
conserved in these numerical experiments with an accuracy of 10-11 , i.e., within 
the round-off error of the computer. For the difference approximation of the balance 
law scaled by the maximum of the solution we obtain quantity of order of 10- 12 • 

An important feature of the sechs is that they appear to be stable only when 
propagating almost with the characteristic speed, namely when 0.9951 ~ lei < 1 · 
This kind of limited structural stability was already discovered in (7] for the "usual" 
Boussinesq equation. In Fig .2 we present the long-time evolution of a sech At the 
beginning it evolves into a pulse with wavy fore-runner of relatively low intensity. 
Gradually, the fore-runner forms an individual pulse propagating with the char
acteristic speed and breaks away from the sech-like reminder which is marginally 
slower . The celerity of the latter is defined by (12) for f3 = 5. 

In the case f3 < 0, the sechs are never stationary. Even if their celerities 
are very close to characteristic speed, they are not able to preserve their shapes 
and eventually transform into pulses. In Fig .3 is presented a typical case. One 
sees that the amplitude of the pulse decreases with time while its support increases 
(" red shift" ). This self-similar (we call it also "Big-Bang") behaviour of the pulses 
was observed in our previous calculations (12] for the case of cubic-quintic nonlin
earity of fourth-order BE. The "Big-Bang" behaviour can also be traced back to 
the relevant numerical calculations for KdV (see, the works referred in (13], (14]). 
Here is to be mentioned that the basin of attraction of pulse solution appears to 
be much larger than the basin of attraction of sechs. The latter means that in the 
experiments one is to expect pulses rather than sechs . 
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The limited space does not allow us to present here a picture, but we can 
say that in the course of interaction the pulses pass through each other without 
changing qualitatively their shapes (save the red-shifting) and the mass and pseu
doenergy of the system of pulses are perfectly conserved . This sufficeS to claim that 
the pulses are also solitons in the strict sense. 
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