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PREFACE 

The Eurotherm Committee was created in Brussels in October 1986, following 
an initiative from members of the European Community, taken at the 8th 
International Heat Transfer Conference in San Francisco earlier that year. The 
aim of Eurotherm is to promote and foster the European cooperation in Thermal 
Sciences and Heat Transfer by gathering together scientists and engineers wor
king in specialized areas, through scientific events such as seminars and wider 
conferences. 

Since that time, more than fourty seminars were organized, dealing with ma
ny different topics related to heat transfer. A former seminar, n ° 13, was devo
ted to particular aspects of modelling in Computational Fluid dynamics (Harwe!I
UK, 1990). The present seminar n ° 36 held in ENSMA-Futuroscope (September 
1994) dealt with advanced concepts and techniques in thermal modelling. 

The objectives of the seminar were to present new numerical approaches or 
conceptual tools that either reduce the computational time (with the control of a 
possible loss of accuracy) or allow a more accurate description of thermal sys
tems. 

Three complementary approaches were explored: 
- at system level (bondgraphs, network representations, model reduction, 

expert systems) 
at the classical macroscopic level based on the continuum mechanics 
description (combining control volume and finite element methods, 
multigrids) 
at a microscopic level, where some new and promising techniques were 
identified, like molecular dynamics or cellular automata. 

The four invited lectures presented in these proceedings did contribute to 
review those new fields of interest for heat transfer modelling. 

Besides, many other valuable papers have been collected here, as advanced 
contributions in : 

- numerical techniques {11 papers) 
- system and processes analysis (8 papers) 
• model reduction and reduced schematisation (6 papers) 
- data processing {3 papers) 
- improved modelling on a physical basis (3 papers) 
- thermal radiation modelling (5 papers) 

This Seminar 36 was actually an international event, attended by 90 
scientists and engineers from 10 countries, not only from the European 
Community. Four invited lectures were delivered, 25 papers were presented in 
oral sessions and 31 in poster sessions. Almost all the authors proposed a full 
length paper, among which 40 have been accepted after the final review, pro
cessed by the Scientific Committee, with the help of some external relevant 
personalities from the areas. 

Denis Lemonnier, Jean-Bernard Saulnier and Martin Fiebig, editors 



Splitting methods for free-surface viscous flows 
subjected to thermal Marangoni effect 
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Patterned convection driven by surface-tension gradients in a thin layer of a Boussinesq 
fluid open to air is considered. The evolution of the cellular structure is investigated 
numerically using the (1+2)D equation derived by Knobloch and Shtilman-Sivashinsky 
(for infinite Prandtl number fluids). For the numerical solution of the equation con
sidered, a splitting difference scheme is developed. The computational domain is a 
large box. Two distinct cases are considered: (a) the material of lower boundary is 
much better heat conductor relative the fluid; (b) the other extreme case, a poorly 
conducting lower wall. For the first case our calculations confirmed the existence of 
a steady hexagonal-pattern as observed in carefully controled laboratory experiments. 
In the second case a complex time-dependent pattern of irregular polygons takes place, 
which was also reported in experimental works for similar conditions. 

1 Introduction 

Pattern formation in driven systems with many degrees of freedom (e.g., continuous systems) 
is a paradigmatic example of self-organization, the latter describing the emerging properties 
that result from the interaction of large number of units (degrees of freedom). Rayleigh
Benard buoyancy-driven convection in horizontal fluid layers (see [7, 12) for theoretical and 
experimental description) is an instructive particular case. 

The main obstacle to theoretical model convetion problems is that the flows are spatially 
three-dimensional and unsteady [(1 + 3)D - for brevity). The natural convective patterns, i.e., 
those arising from the amplification of initial inhomogeneities are rarely made of a few number 
of modes. The dynamics of such confined systems is described by a few number of variables, 
uniform across the system. A popular model is that of Swift and Hohenberg [11) who derived 
simplified (1 + 2)D equation for the amplitude of the planform solving for the bulk flow in the 
framework of the long-wave approximation and infinite Prandtl number. Later on Knobloch 
(4) and Shtilman and Sivashinsky (10] went on to derive the respective (1 + 2)D equation for 
the case of surface endowed with Marangoni effect (Benard-Marangoni convection). 

The price one has to pay when reducing the original ( 1 + 3)D problem to (1 + 2)D sim
plify equations is increasing the order of spatial derivatives. In Swift-hohenberg (SHE) and 
Knobloch-Shtilman-Sivashinsky (KSSE) equations, diffusion terms appear with fourth-order 
spatial derivatives. The latter poses aditional difficulties when devising difference schemes and 
algorithms for numerical solution. For the SHE we have devised a splitting scheme (2]. In 
the present work we generalize the scheme to the case of KSSE when the interaction with 
lower-order but highly nonlinear terms is of importance. 

1Present adress: Universite Libre de Bruxelles, Service de Chimie-Physique CP 231, Boulevard du 
Triomphe, B-1050, Brussels, Belgium. 
2 On leave from Institute of Meteorology and Hydrology, Bulgarian Academy of Sciences, Sofia 1184, 
Bulgaria. 
3 On leave from Promon Engenharia ltda., Praia do Flamengo 154, 22210 Rio de Janeiro, Brazil. 
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2 Posing the Problem 

The method, already developed by Poincare and Lindstedt, consists in the perturbative de
velopment of the solution near the bifurcation threshold and relating the order of magnitude 
of the the amplitude of the unstable mode to the distance of the control parameter from the 
bifurcation point. Experimental evidence shows that the finite amplitude of an unstable mode 
evolves in space, in a scale much longer than the characteristic wavelength of the mode. Then 
a complex equation for the amplitude planform can be derived (see [5], and specially (6, 91) 
which could be of different type (parabolic or hyperbolic) in different limits. 

Systems consisting of a thin layer of a fluid confined between poorly conducting boundaries 
display a convective structure with a wavelength much longer than the depth of the cell [8]. 
If in addition the Prandtl number of the fluid is high, then the velocity field rapidly adjusts to 
any perturbation of the temperature field, which is the slow variable, hence dominant of the 
system. The evolution of the deviation of the temperature field from the base state ( conductive 
state) is described by the (1 + 2)D equation derived by Knobloch (4]: 

~: = -QU ~ 2Au -- l:!,.2u + V. (1vu12 vu - .,\Au - Vu - µVIVu\
2

)' (1) 

where a represents both the distance to the critical Marangoni number and the scaled Biot 
number. The rest state of the equation (1) is stable for o > 1, while the critical wave
length vanishes when o = 0. The linear terms contain the selection mechanism of the critical 
wavelength, and .,\ and µ represent the asymmetry in the boundary conditions at the top and 
the bottom. This equation has been numerically solved by Shtilman and Sivashinsky (10] for 
1 <a< 0.6 in a relatively small region (square box), with periodic boundary conditions. These 
authors obtained a hexagonal pattern for values of o close to 1 and noted a tendency of cells 
to undergo distortions as o approaches 0.6. Here, following [10] we set .,\ = ½v'7, µ = ¾v'7-

3 Difference Scheme and Algorithm 

To elucidate how the scheme is constructed we rewrite eq. (1) in the following form: 

8u 
8t 
Fn 

-A 2u + V · \Qn(x,y)Vu]- au - V • (F"(x, y)Vu] - µA\Vul
2

, 

= 2 +>.Aun, Qn =(Aun/. 

(2) 

The main idea is to invert on the "new" time stage n + l the negative definite operators 
in order to avoid the limitations on the time increment of the type 1" ~ O(h

4
) while the non

definite lower-order operators are kept on the "old" time stage n. Then the desired semi-implicit 

scheme reads: 

un+i _ Un 
-- =(Li+ L2)un+i + Li2Un -V · [F"(x,y)Vu"] - µA]Vu"l

2
, 

T 

where Li, L2 and Li 2 stand for the difference approximations of the operators 

84 ana O 84 8.,_8 °' 
,:,4+;lQ!l. 2' 84+!:lQ>l 9' ux ux u:1 y uy uy -

respectively. 
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84 
and Li2 = -2 ox 2oy 2 , 

(3) 



The spliting scheme is implemented in a similar manner as in (2), namely 

ii - Un 

r 
un+1 - ii 

r 

= Lift+ (L2 + L12) Un - 'v • [Fn(x,y)'vun] - µb.l'vunl 2
, 

= L2 (un+J - un) 

(4) 

(5) 

To show that the splitting scheme approximates the original implicit scheme we rewrite (4), 
(5) as follows 

[E - r L1] ii = [E + r L2] Un+ r L12Un - r'v • [Fn(x, y )'vun] - rµb.l'vun12, 

[E-rL2]un+I = ft--rL2un. 

Now the intermediate-stage variable ft can be eliminated to obtain 

un+l Un 
[E + r 2L1L2] r- = (L1 + L2) un+l + L12un - 'v. [r(x,y)'vun] - µb.l'v·un1 2

, (6) 

Using Q;j = ('vun)7i one shows that the approximation, preserving on the difference level 
the differential equation is 

i_ [Qn_!}___ii] 
ox ox 

~ [G:'+1,j + Qi,j ft;+l,j - ii;,j - Qf,j + Q:'-1,j ii;,j - iii-1,j] . (7) 
hx 2 hx 2 hx 

!_ [Qn !_Un+!] 
oy By 

= _ ,,j+1 i,j ui,i+i - u;,; _ ii ij-1 u;,i - ui,i-1 . (8) 1 [Qn + Qn n+l n+l Qn + Qn n+l n+l ] 

hy 2 hy 2 hy 

4 Results and Discussion 

We solved the equation (1) in two large boxes with rigid sidewalls, using the finite-difference 
method and the semi-implicit intergration scheme above described. The initial condition 
consisted of a random disturbance with zero mean. Boundary conditions were assumed as 
u = ou/on = 0, where n is the direction normal to the the sidewall. These boundary condi
tions apply to the amplitude of convective patterns (1) and to the Swift-Hohenberg model (3]. 
The time evolution of the pattern was monitored through a norm defined by 

II II = ! ~i,j lu?,f1 -u?,;I 
u Li T '°· - lun+11 ' L.n.,J 

(9) 

where u?,i represents the value of the temperature deviation in the time step n, at point i,j 

of the horizontal grid. ur.:;1 represents the temperature in the subsequent time step. This 
norm essentially measures the rate of change of the distancce between two successive matrices 
containing the temperature values in the points of the grid. It is sensitive to both the growth of 
the patterns towards a saturated state and the phase evolution, which is usually much slower 
than the saturation. 

In the first run we considered the case of good conducting horizontal boundaries, by setting 
a- = 0.9. A square box where the length of each side is equal to 150, corresponding to 
approximately 21 wavelengths, was used. A grid of 402 x 402 points was defined, leading to 
a mesh of approximately 20 points per wavelength. In Fig. 1 is shown the time evolution of 
the system starting from a random initial condition. The system evolves towards a stationary 
state. 
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t=0 t = 20 t = 100 

t = 200 t = 400 t = 700 

t = 1000 t = 2000 t = 3000 

t = 6000 t = 7000 t = 14800 

Figure l: Evolution of the solution of eq. (1) from a random initial condition when the 

damping is considerable o = 0.9. 
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Figure 2: Evolution of the L1 norm with the time for a= 0.9. 

Several penta-hepta defects can be observed in the grain boundaries. The evolution of 
the norm L 1 ( Fig. 2) shows initially an irregular behaviour with sharp peaks associated to 
qualitative changes in the pattern during saturation, essentially consisting of the elimination 
of most of the defects. This stage is followed by a slow and long evolution of the phase, in 
which a minor qualitative change still occurs. In the third stage, the speed of evolution of 
the pattern exponentially decays towards a steady state. This type of pattern is observed in 
carefully controlled experiments. 

It is worth mentioning that unlike the SHE, eq. {1) is non-variational, leading to the 
possibility of a more compex behaviour in which steady states may not exist. This is precisely 
the situation we have observed when we considered poor conduting horizontal boundaries 
(corresponding to a smaller a), by setting a:= 0.3 in a square box with l = 75 and a grid of 
202 x 202 points, corresponding to approximately 20 points per wavelength. Let us mention 
that the system does not settle to a single state with decrease of a: and the only way to obtain 
results is by reducing the time increment. While the case a = 0.9 was effectively tackled with 
-r = 0.1, the solution for o, = 0.3 was obtained only after reducing the time increment to 
-r = 0.005. This value of a: appeaes to be a threshold, since for a = 0.2 the numerical code 
is not stable even for time steps smaller than 10-5

. The results for the pattern evolution are 
shown in Fig. 3 and the L 1 norm - in Fig. 4. Th.e pattern continuously evolves in time, as 
unambiguously captured by the irregular behaviour of the norm L1 , that displays a sustained 
high mean value. 

The transition from predominantly hexagonal pattern (Fig. 1) to an irregular pattern 
(Fig. 3) takes place smoothly with the decrease of a. The chaotic behaviour for a = 0.4 
is qualitatively the same as for o, = 0.3. However, something like intermittency between the 
two regimes is observed with relatively long time spans with predominance of the hexagonal 
pattern. 

Finally we have studied the case of much smaller box, when the wall effects dominate the 
solution. Fig. 5 shows the case for a box 30 x 30 and resolution 52 x 52 for the small a = 0.4. 
It is clearly seen that a rhombic pattern appears, which is not steady. Rather it is "breathing'" 
while preserving qualitatively the main features. 
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t=0 t=5 t = 50 

t = 100 t = 200 t = 500 

t = 700 t = 1000 t = 1500 

t = 2000 t = 2500 t = 3000 

Figure 3: Evolution of the solution of eq. (1) from random initial condition with lower 
damping coefficient a = 0.3. 
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le+OO ~----~------,,---------,------

1,-01 

1,.02 

/e.()J L...----L-------'-------'-----_J 
O I t+OJ 2e+DJ Je+OJ 4t+OJ 

Figure 4: Evolution of the L1 norm with the time for a = 0.3. 

t = 20 t = 100 t = 10000 

Figure 5.The set up of "breathing" rhombic pattern for a= 0.4 and small box 30 X 30. 
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Mixed convective heat transfer in a horizontal 
bend 

by J.J.M. SILLEKENS (*), C.C.M. RINDT (*) and A.A. VAN STEENHOVEN (*) 

(*) J.M. Burgers Centre for Fluid Mechanics, Eindhoven University of Technofogy, P.O. Box 513, 
5600 MB Eindhoven, The Netherlands. 

Abstract 

The effect of a developing secondary flow, induced by both centrifugal and buoyancy forces, on 
heat transfer inside a horizontal curved pipe is studied. The governing equations are solved in a 
finite element formulation using triquadratic elements for the velocity as well as for the temperature 
field. The results show that secondary flow considerably increases heat transfer. 

1. Introduction 

Considering depletion of natural energy sources and its relation to pollution of the en
vironment, it is obvious that an effective utilization of energy is of extreme importance for 
mankind. It is therefore not surprising that in the course of the last decennia quite some 
effort has been made to enhance the performance of heat exchangers. Helically coiled tubes 
are widely used in heat exchangers since they are relatively easy to produce, cheap and effi
cient. A typical example can be found in the storage vessel of a Solar Domestic Hot Water 
System (SDHVv), sketched in figure 1 a. 

\ 

\d::::j 
- !Ip:· '\ 1 

2rrp-I:=•[ 
lF= ·=*=-- -~f= 

collector storage vessel 

a 

<pr 

2 R, 

--, 
/ 

6 ~'- . .._, /.,,../--
?' • / 

RC ---\g 
., 

b 

z+ -Y ~. 
Figure 1: Coiled heat exchanger. a: sketch of a Solar Domestic Hot Water System, b: 
hoi-izontally curved pipe 

The collector medium (water) is pumped through the collector where it is heated by 
Rolar radiation. To tide over the time gap between collection (maximal around noon) and 
nt.ilization (mostly in the evening and morning) of solar energy, heat is transfered from 
the collector medium to mains water in the storage vessel. An effective way to operate a 
SDHWS is according to the low-flow principle: during the time of one day an equivalent 
amount of mains water in the storage vessel (about 100 l) is pumped through the collector. 
In combination with a stratified storage, in this way exergy loss due to mixing is minimized. 

In the present study we will focus on the first 90° of the coil, where the flow and temper
ature field develop and where the major part of the heat transfer takes place. 

Since the work of Dean [5], it is known that forced laminar flow in curved ducts is char
acterized by secondary vortices (Dean vortices) perpendicular to the main (axial) fl.ow. This 
gecondary flow is a result of the centrifugal force acting on the fluid particles, which drives the 
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