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Abstract

An equation representing the so-called Boussinesq Paradigm is considered. A conservative
fully nonlinear scheme is constructed making use of internal iterations. Head-on collisions
between different kinds of solitary waves are considered as featuring example.

1 Introduction

After John Scott-Russell discovered the ‘great wave’ there were different attempts to find its appro-
priate model. Boussinesq [2] introduced the fundamental idea of balance between the nonlinearity
and dispersion and derived the first approximate expression for the dispersion in the case of weakly
nonlinear long waves. We call this balance “Boussinesq Paradigm” together with the set of differ-
ent Boussinesq equations that are derived under the said assumption. They are generalized wave
equations which offers the opportunity to investigate the generic features of wave systems, such as
head–on collisions of localized structures (solitary waves/ quasi-particles). Some of the Boussinesq
equations are fully integrable, others possess just three conservation/balance laws: for mass, energy
and momentum.

In order to faithfully represent the conservation properties of the differential equation, the dif-
ference scheme used for its simulation must also be conservative. In the present paper we outline
the way of constructing conservative schemes for the Boussinesq Paradigm and demonstrate their
efficiency.

2 Boussinesq Paradigm

Boussinesq attempted to describe the quasi-stationary wave phenomena in the moving frame when
some simplifications of the original system are possible. We split Boussinesq’s derivation into two
steps. The first step is to simplify the convective nonlinear terms arriving at
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which we call Boussinesq Paradigm Equation (BPE).
The second step which we will deliberately omit is to interchange ∂2/∂t2 with ∂2/∂x2 or vice

versa. If one performs the second step of Boussinesq derivation one gets for the dispersion β
3uxxxx.
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We call the respective equation Boussinesq’s Boussinesq Equation (BBE) which is notorious for being
linearly instable. The other option is to render the spatial derivative in the brackets to a temporal
and to represent the dispersion as β

3uttxx. Then one arrives at the so-called Regularized Long–Wave
Equation (RLWE) which is linearly stable but not fully integrable. It should be mentioned that the
eqn (2.1) appears also in the theory of longitudinal (acoustic) vibrations of rods and lattices (see,
e.g., [12]).

Eqn (2.1) can be rewritten as a system

ut = qxx , qt = u− dU

du
+ β1utt − β2uxx (2.2)

where β1, β2 > 0 are introduced for the sake of generality.
Consider b.c. at finite interval x ∈ [−L1, L2], namely u = 0 , qx = 0 . Then following [3, 7] we

show that
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The quantities M,E and P are called respectively (wave)mass, (wave)energy and pseudomomen-
tum (wave momentum) (see also the definitions in [10] from the general continuum mechanics point
of view).

Thus we see that if the second step of Boussinesq simplifications is not performed and BPE is
left in its original form it is preferable because now the wave mass is also conserved alongside with
the energy which is not the case with the RLWE.

3 The Conservative Difference Scheme

Let us introduce a regular mesh in the interval [−L1, L2], xi = −L1+(i−1)h, h = (L1+L2)/(N−1),
where N is the total number of grid points.

It is clear that the strictly conservative scheme is inevitably nonlinear. There exist many different
ways to linearize a difference scheme. In our calculations the simplest linearization combined with
an inner iteration (referred to by the index k) appeared to be the most robust one. We consider a
scheme which is a descendant of the scheme proposed in [3] and used on several different occasions
(e.g., [7]), namely,
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with b.c.
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The general idea when treating the nonlinear term is to represent it as

U(un+1)− U(un−1)
un+1 − un−1

(3.9)

and then to linearize it and to conduct internal iterations. The inner iterations start from the
functions obtained on the previous time stage un+1,0

i = uni and qn+ 1
2 ,0

i = qni , and are terminated at
certain k = K when
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i |

The value 10−13 is selected to be great enough in comparison with the round-off error 10−14. In
general, the number of iterations K depends on the size of time increment (in our calculations be-
tween six and eight). After the inner iterations converge one obtains, in fact, the solution for the new

time stage n+1 of the non-linear conservative difference scheme, namely un+1
i
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From now on we shall not refer more to the internal iterations (hence omitting the composite
index k), but rather consider the general properties of the scheme (3.6), (3.7) where the iterations
are considered as accomplished.

Generalizing the derivation from [3] we prove that the approximation (3.9) secures the conserva-
tion of energy on difference level for arbitrary potential U(u), namely the difference approximations
of the mass and energy
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are conserved by the difference scheme (3.7), (3.6) in the sense that Mn+1 = Mn and En+ 1
2 = En−

1
2 .

As far as the satisfaction of the conservation and balance laws does not depend on the truncation
error, we call it “strict in numerical sense”. For comparison we mention the work [9] where the
respective laws are satisfied within 10−5, which though very good is not “strict in numerical sense”.

The scheme (3.6), (3.7) consists of two conjugated three-diagonal systems. We render them to a
single five-diagonal system and to apply the specialized solver for Gaussian elimination with pivoting
[6].

4 Numerical Experiments

Our first objective is the head–on collision of two sechs. For the Paradigm equation with U(u) =
αu3/3 they are given by:

u = −3
2
c2 − 1
α

sech2

(
x− ct

2

√
c2 − 1

β1c2 − β2

)
, (4.10)

for |c| < min{1,
√
β2/β1} or |c| > max{1,

√
β2/β1}. Here c is the phase velocity or celerity of the

wave. In the numerical experiments we used α = −3, β1 = 1.5, β2 = 0.5, so that the ratio β1/β2
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Figure 1: Interaction of two sech2-solitons in BPE: c1 = 1.2, c2 =−1.5, The time ranges from 0 to
100. Ordinate refers to the lowest line.

-12 -9 -6 -3 0 3 6 9 12
-0.4

0.0

0.4

0.8

Figure 2: Head-on collision of two ‘depressions’: c1 = −0.57, c2 = −0.57. Time ranges from 0 to 20.

(the value of, say, β1 can be re-scaled) and the sigh of the nonlinear term is the as same as for the
original Boussinesq case.

We begin with the supersonic case. The interaction of seches is elastic (small phase shift and no
excitation of residual signals) only for very small deviations from the characteristic speed, approx-
imately when 0.99γ ≤ |c| < 1 which appears to give the quantitative assessment of the validity of
long-wave weakly-nonlinear approximation.

Increasing the difference from the characteristic speed increases the inelastic effects. This is an
intrinsic property of the equation and not an artifact of the scheme, because the conservativeness of
the difference approximation. For instance, the energy of the configuration showed in Fig. 1 kept the
constant value E = 3.9904887039946 during the evolution. The agreement of numerically observed
phase shift with the analytical two-soliton solutions is discussed in [7]. For c > 2.1 a nonlinear
blow-up (see [13] for definition) took place in our calculations. It is explained by the fact that the
energy functional of Boussinesq equations is not positive definite and in for some wave shapes the
amplitude can grow while the total energy of the system is conserved.

The sech depressions are possible for c < cd = 3−
1
2 ≈ 0.57745 but β1, β2 � 1 they are not

long-wave-length solutions because |c2 − 1| � β1c
2 − β2. In this instance they are not of physical

relevance to the surface-wave phenomenon. Yet, it is important to investigate the properties of
BPE also in the subsonic case. The threshold of nonlinear blow-up for BE was found [7] to be near
c ≈ 0.866 which is much larger than cd. Although in a very narrow range 0.575 > c > 0.568 we did
find head-on collisions of depressions in PBE without nonlinear blow-up taking place (see Fig. 2).

We present here also a case which is specific only for eqn (2.1), namely an interaction between a
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Figure 3: Head-on collision of a ‘depression’: c1 = −0.4 and elevation c2 = 1.2. Time ranges from 0
to 100.
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Figure 4: The long-time evolution of the left-going wave system from Fig. 1

depression and elevation (Fig. 3). It is seen that the depression does not survive the collision while
the supersonic elevation is split into two humps which eventually become two separate sech solitons.

Now we address the problem of formation pulses. Their appearance was observed for KdV as
early as in [8, 1]; for BE – in [12] and for RLW —in [9]. The pulses did not attract much attention
because of the lack of analytical expression for them. Our calculations confirm that in the wake of
collision of two humps oscillatory pulses occur without violation of the conservation of the mass and
energy . The energy of the pulses is approximately 0.002 of the total energy, i.e., they appear to be
localized waves of non-zero amplitude, but with virtually zero energy which is another demonstration
of the fact that the energy functional of PBE is not positive definite.

It is shown in Fig. 4 that the pulse is not a stationary localized wave. An important feature of
a pulse is that its amplitude decreases with time while its support increases (“red shift”). This self-
similar (we call it also “Big-Bang”) behaviour of the pulses was observed in our previous calculations
[5, 4] with a non-conservative scheme for the case of cubic-quintic nonlinearity. The self-similar
scaling for BE found in [5, 4] is the same as the scaling for self-similar solutions of KdV ([11]). We
performed numerical experiments with pulsees and discovered that they did preserve their shapes
upon collisions, save some “aging” on a time scale longer than the time scale (cross–section) of
collision. This allows us to call them “aging solitons”.

5



In: Proceedings ICFD 5, K. Morton, J. Baines, eds., Oxford (1996),343–349

5 Conclusions

For Boussinesq Paradigm Equation we have constructed conservative nonlinear scheme of second
order of approximation in space and time with internal iterations on each time step.

The head–on collisions between the different kinds of solitary waves (depressions and/or eleva-
tions) have been investigated and their solitonic properties verified numerically. For phase velocities
(celerities) close to the characteristic speed, the collisions are virtually elastic save the appearance
of a phase shift.

For larger deviations from the characteristic speed a residual signal is also excited in the cite
of bygone collision. The conservativeness of the scheme allows us to claim that this is a generic
property of the considered class of equations. Depending on the initial energy of the wave system,
the residual signal either yields a nonlinear blow-up or transforms into a pulse that is “red-shifted”
(spreading in space) and decreases in amplitude during the time.
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