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Implicit Scheme for Navier-Stokes Equations in 
Primitive Variables via Vectorial Operator Splitting 

C. I. Christov 
National Institute of Meteorology and Hydrology 

Bulgarian Academy of Sciences, 66 Tsarigradsko Chaussee blvd 
Sofia 1784, Bulgaria 

R. S. Marinova 
Dept. of Mathematics, Technical University of Varna 

1 Studentska str., Varna 9010, Bulgaria 

Summary 

The incompressible steady Navier-Stokes equations in primitive variables are coupled 
by the Poisson equation for pressure. Fictitious time is added and vectorial operator split­
ting is employed leaving the system coupled at each fractional-time step. Practical con­
vergence and approximation of the scheme are verified. The lid-driven 2D flow in a rect­
angular cavity is considered as featuring example. Grids up to 513 x 513 are used and 
results are presented for Reynolds numbers as large as Re = 10000. They are in very good 
quantitative agreement with published data. 

Key words: Navier-Stokes, Operator Splitting, Fractional steps. 

1 Introduction 

The Navier-Stokes equations are coupled through the nonlinear terms, the continuity equa­
tion and the boundary conditions. For internal flows the pressure is not prescribed on the bound­
aries. It can be eliminated from the equations by means of stream function and vorticity function 
('lj; - w formulation in 2D), but then boundary condition for vorticity is absent. 

The implicit nature of pressure (vorticity function) requires special care for the stability of 
algorithms since the explicit decoupling of the boundary conditions (descendant of the so-called 
Thorn's condition) imposes significant limitations on the time increment [18, 22, 5, 6, 12]. 

There exist in the literature different approaches to the problems of decoupling. The con­
tinuity equation is decoupled by the Chorin method of fractional steps (see [13)) in which the 
velocity field is predicted on the first half-time step and then the pressure is adjusted on the 
second half-time step so that the momentum equations are projected on divergence-free vector 
field . A comprehensive account of the progress recently made along these lines can be found in 
[15) where the 3D problem is also treated. This kind of methods are called "semi-explicit". 

The boundary-condition problem has also received considerable attention. In 'lj; - w for­
mulation Ghia eta/. [8) elaborated the iterative Thorn's condition. Different algorithms for 
coupled solution of the 'lj;- w equations were developed in [7, 16, 12] among many others. In 
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primitive variables Vanka [23] uses an algorithm for coupled solving Navier-Stokes equations 
with central differences. See, e.g., [9] for a comprehensive review on this subject. 

Vectorial version of the method of coordinate splitting of operator was proposed in [ 18] for 
'if; - w formulation and a specialized solver was developed. Following the idea of coordinate 
splitting for bi-harmonic operators from [I] a fully implicit implementation of the boundary 
conditions is achieved in recent authors' works [5, 6] by means of a splitting scheme for the 
fourth-order stream-function equation (see, also [4, 3] for another applications of operator split­
ting for bi-harmonic operators). 

If instead of the continuity equation one uses the Poisson equation for pressure one can add 
fictitious time and render the original system into a set of three coupled parabolic equations for 
u, v and p. One-to-one correspondence to the original system holds if the continuity equation 
is satisfied on the boundaries. This leads to overposed problem for the velocity components if 
decoupled from the pressure. 

In the present paper a vectorial version of the operator-splitting implicit scheme is proposed 
which preserves the coupling between the sought functions at each fractional-time step allowing 
one to satisfy the boundary conditions without iterations. The approximation and stability of 
the scheme in full time steps is achieved after the continuity equation is added to the Poisson 
e11uation for the pressure and dully splitted . 

In order not to obscure the main ideas of the method we consider only regions with recti­
linear boundaries in cartesian coordinates. The grid is assumed uniform and staggered. For the 
nonlinear terms conservative approximation with central differences is used alleviating thus the 
problem of artificial viscosity. As a featuring example the lid-driven viscous incompressible 
flow in a rectangular cavity is treated. 

2 Posing the problem 

The 2D viscous incompressible flow is governed by the Navier-Stokes equations 

~ (82u + 82u) _ 8p _ 8u2 _ 8uv _ 0 
Re 8x2 8y2 8x 8x 8y - ' 

~ (B2v + 82
v) _ 8p _ 8uv _ 8v

2 
_ 

0 
Re 8x2 8y2 8y 8x 8y - ' 

coupled by the continuity equation 

8u 8v 
8x + 8y = O, 

(I) 

(2) 

(3) 

where u = u(x, y) , v = v(x , y) are the velocity components; p = p(x, y)- the pressure. The 
Reynolds number is R e = U Lfv, where U is the characteristic velocity, L- characteristic 
length, v - kinematic coefficient of viscosity. 

Upon applying the operation div to (1), (2) and acknowledging the continuity equation 
one obtains an explicit expression for p called "Poisson equation for pressure". However, for 
internal flows no boundary conditions are available for p and the very Navier-Stokes equations 
(I), (2) are to be taken on the respective boundary [II]. The formulation with Poisson equation 
for pressure is equivalent to the original system only if the continuity equation (3) is satisfied 
also on the boundaries. 
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The Poisson equation is multiplied by 1/ Re and from the result the continuity equation (3) 
is subtracted (the latter is of crucial importance for the properties of the scheme). Thus 

1 (82p 8
2
p) 8u 8v 1 ( 8

2
u

2 
8

2
uv 8

2
v

2
) 

Re 8x2 + 8y2 - 8x- 8y + Re 8x 2 + 2 
8x8y + 8y2 = 

0· (4) 

We add derivatives with respect to a fictitious time t and render the equations for u, v and p 
into the following vectorial system for 0: 

80 - ;;1 

8
t = (AI + A2)8 + F[OJ . 

where 0 = column[u, v, p], F[OJ = column[O, 0, FP] 

(

L •• - C. 0 -L.) 
AI = 0 L .. - c. 0 ' A2 = 

-L. 0 L .. 
(

Lyy- Cy 0 
0 Lyu- Cy 
0 -Ly 

FP=- -+2-- +- ' 1 (82u2 
8

2
uv 82

v
2
) 

Re 8x2 8x8y 8y2 

1 82 

L .. = R e8x2 ' 

1 82 

Lw = Re8y2 ' 

8 
L. = 8x' 

8 Ly = 8y. 

(5) 

-~y) ' Lyy 

Here c •. Cy stand for the splitted nonlinear convective terms. For the sake of brevity only their 
difference approximations (9) are given explicitly in the present paper. 

The flow in the lid-driven cavity occupies the region 'D = {0 ~ x ~ 1, 0 ~ y ~ 1} and the 
boundary conditions read 

u(x , 0) = u(O , y) = u(1, y) = 0, u(x, 1) = 1; v(x, 0) = v(x •. 1) = v(O, y) = v(1, y) = 0. 

with the additional conditions for the stemming from the continuity equation 

8u! 8u! 
8x (O,y) = 8x ( l ,y) = O, 

- - o 8vl 8vl 
8y (:r,O) - 8y (:r,l) - . 

(6) 

3 Difference scheme 

We split the operator A1 + A2 according to the scheme of stabilizing correction which is of 
first order in time, but has advantage for non-commuting operators (see [24]): 

jfn+l/2 iJn jfn+l {jn+l/2 
----- = A1ifn+l/2 + Aif' + F[tr'], - = A2(0h+1 - tr'). (7) 

T T 

(
E 0 0) 

Here T is the increment of the fictitious time. Denote I = 0 E 0 , where E is the unitary 
0 0 E 

operator. The half-time-step variable ifnH /2 can be excluded to get 

{jn+l - iJn - -
(I+ T2A1A2) = (A1 + A2)en+l + FWJ. 

T 
(8) 
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which is an implicit scheme of first-order of approximation O(r) . Due to the fact that the con­
tinuity equation has been added in the equation for pressure, the operator I+ r 2 A1A2 becomes 
a positive-definite on the divergence-free solutions when the iterations converge. Therefore the 
splitting scheme is stable when the calculations start close enough to the solution. 

We employ uniform mesh in both directions. The mesh is staggered for u in direction x and 
for v in direction y (see Fig. 1-a) which is consistent with other works on ( u, v , p) formulation. 
It allows one to use central differences for the boundary conditions on two-point stencils. 

The number of grid lines in the two directions is N~ and Nu, respectively. The spacings are 
h~ = 1/(N~- 1), hv = 1/(Nv- 1) and (x;, Y1) = [(i - 1)h~, (j - 1)hv] fori = 1, . . . , N~ . 
j = 1, .. . ,Nv. 

In Fig. 1-b the pressure is sampled on the points labeled by ' •'; function u- in ' o' ; function 
v- in ' *' and the notations P>J = p(x;, Yj). U;J = u(x; - !h~, Y1), v;J = v(x;, y1 - ~hv) are 
used. We employ second-order conservative central-difference approximations for the operators 
in eq.(7), e.g., for c~. Cy [14]: 

y,v 

C .. _ .:.( u_,:..:\...:l!!.J_+_u~fJ>!:):...u..:'.:.+.:.:l J~--...!.( u:.:.f~.tt_+..:._:u~f:;:-~lJoL)~u~,::-~tJ 
:tUI,J- -

4h~ • 

C u · . = (vfJ+l + vf- t.t+t)U;J+l - (vf.t + vf_1J )u;J - t 
Y•J 4hy ' 

C v· . _ (uf+tJ + uf+tJ- l)v;+lJ - (uf.t + u:',;_1)v;_1J 
~ lJ - 4h~ ' 

C .. _ .:.(v-'f""· J..;.+..:.l_+_v;,:',;~.:.)_v.:!;J:._. +..:l:...-.,.--:(:._v~fJL· ...:.+....:..v•!!JnJ:;:·-~1!..) v~;::!.J~l 
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Figure I: Computational domain, grid and finite-difference stencil. 

(9) 

Along the line y = y1 one has to solve two linear algebraic systems: one for the set func-
1 

tion v~; 2 with three-diagonal matrix, and another - for the vectorial set function wn+ 112 = 

I [ n+l/2 n+l/2 n+! n+! n+l/2 n+l/2 n+l/2 ] · h fi · al · co umn u 1J , p 1J , ... , u,J ,P;J , ... , uN,J ,PN,,j , uN,+lJ wtt ve-dtagon matnx. 
In the same manner, the second half-time step along the line x = x; requires to solve a three­

diagonal system for the set function u~j 1 and a five-diagonal system for the vectorial function 

zn+ l = column[v~t 1 ,p~i 1 , . . . , v~j 1 , p~j 1 , - - · , v~t~ , p:,t! , v~t!+d· 
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The multidiagonal systems are solved by means of a specialized solver [2] which is a gener­
alization of what is called Thomas algorithm in the English-language literature or "progonka" 
in the Russian-language one. 

The iterations are terminated when the following criterion is satisfied 

n+l n 

l
uiJ - uiJ I 

max ~ c, 
•J T 

n+l n 

l

viJ - viJ I max ~ e: , 
lJ T 

n+l n 

IPi,j - Pi ,j I < 
~~ _ c, 

•J T 

for sufficiently small tolerance, say e: = 10-6. The rate of decrease of maximal change in 
u, v and p with iterations (the £ 1 norm) is found to vary with Reynolds number Re, time­
step r and iteration number. Fig. 2 shows the observed rate of convergence for two different 
Reynolds numbers. The conservative nature of the scheme clearly shows up in these figures. 
After the iterative process approaches fairly close the solution, the decrease of £ 1 norm becomes 
monotone. 

Re = 2000 
T = 0.1 

10 "' 

10. 

10. 

.... <000 
(WT'o.tion"-'n-

10. 

10. 

10. 

Re = 7500 
T = 0.05 

~ 
10 ·+0~~200<1=~ .. ~ .. ~ 1000 8000 10000 12000 

lil""calWm nvm.lNr 

Figure 2 : Rate of convergence 1/h = 512, < = w-•. 

4 Tests and comparisons 

To test the accuracy and efficiency of the scheme for Re = 1000 we obtain the solution on 
different grids: h~ = hv = h = 1/32, 1/64, 1/128, 1/256, 1/512 and different time increments 
r. The results confirm the full approximation of the scheme (no dependence on r) and the 
O(h2) spatial approximation. Since we employ primitive variables the main characteristics to 
compare are the velocity components. The velocity profiles for u along the vertical cross section 
and v along the horizontal cross section trough the geometric center of the cavity are shown in 
Fig. 3 for several grid sizes. They are in close agreement between themselves as well as with 
the results of [8], the latter being widely accepted as a benchmark results. 

More elaborate comparison of our results for the velocity profiles in the cross-sections 
through the geometric center of the cavity will be presented elsewhere. 

5 Some further results for cavity flow 

Driven cavity flow has always been a standard case study for any new scheme for Navier­
Stokes equations. The advantage of this test problem is that its geometry is the simplest possible. 
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Figure 3: Velocity profiles through vonex center cavity, Re = 1000. 

The disadvantage is that there are singularities in the points where the lid touches the vertical 
walls. It turns out, however, that the discontinuous boundary condition does not pose much 
difficulties. For moderately high Re, published results are available for this flow problem from 
a number of sources [5, 10, 13, 20, 23]. Some results are also available for high Re [17, 19], 
but the accuracy of many of these solutions has generally been regarded with certain skepticism 
because of the sizes of the computational meshes employed and of the difficulties with conver­
gence. Exception to these may be the results obtained by Ghia et al. [8] and Turek [2 1] for 
Re = 10000 using multigrid and adaptive grid techniques for solution. Ghia et al. obtained 
highly accurate solutions using 257 x 257 grids. Schreiber and Keller [ 17] solved this problem 
using a sequence of grids of 180 x 180 points. 

The streamline contours for different Re ranging from 1000 to 10000 are shown in Fig. 4 for 
grids of 513 x 513 nodes. They form a primary vortex the location of whose center as function 
of Reynolds number is shown in Fig. 5-a. The center of the primary vortex moves towards the 
geometric center of the cavity when Re increases. 

Secondary vortices appear at the cavity comers. For smallest Re appears the vortex at the 
right-bottom comer. Its position as function of Reynolds number is shown in Fig. 5-b and 
compared to the literature data. The center of secondary vortex in the bottom right 'comer also 
moves towards the center with the increase of Re. Note that third-order accurate interpolation 
in the vicinity of centers of vortices is used to localize the position of local extrema of stream 
function. 

For moderate Re a secondary vortex appears in the lower-left comer. The latest to appear 
is the secondary vortex at the top-left comer of the cavity. It is much more intricate in shape 
because of its close interaction with the discontinuity of the u component at the lid comer. To 
get an idea of how the shape of left-top secondary vortex depends on Re we conduct special set 
of calculations presented in Fig. 6. 

Tertiary vortices appear in the lower-right comer of the cavity for Re ::::: 5000 and in the 
lower-left comer for Re ii:; 7500. These two tertiary vortices persist for different grids and are 
consistent with [8]. 

An interesting new observation of the present work is the appearance of a third tertiary 

256 

a) Re = 1000 b) Re = 2000 

c) Re = 3200 d) Re = 5000 

e) Re = 7500 f) Re = 10000 

Figure 4: Streamline pattern. Contour values are: - 0.115, - 0.11, - 0.10, -0.09, - 0.07, - 0.05, -0.03, -0.01, 
- l.O x w-•. - l.O x 10- •. - l.O x 10-7, o. 1.0 x 10- 7 , 1.0 x w-•. 5.o x 10-•. 1.0 x w-•. 2.5 x 10- •. 
5.0 x 10-•. 1.0 x w- 3 , 1.5 x w- 3 • 3.0 x 10- 3 . 

vortex in the top left corner of the cavity for Re = 10000. This tertiary vortex have not been 
observed in [8, 17, 19]. We believe it is very precious structure which heavily depends on 
the mesh size and on the approximations. All cited works from the literature employ upwind 
differencing which has smoothing effect regardless to the measure taken to achieve second order 
of approximation. 

6 Conclusions 
An efficient vectorial implicit operator-splitting method for steady Navier-Stokes equations 

is developed in which velocity and pressure are coupled on each fractional time step and the 
boundary conditions are resolved in fully implicit manner. 

As a featuring example the lid-driven viscous incompressible flow in a rectangular cavity 
is treated by the new scheme. The mandatory numerical experiments are performed involving 
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Figure 5: Effect of Re on location of vortex centers: - o-: present results, ll. : [8], Re = 1000, 3200, 5000, 7500, 
10000, 0: [17], Re = 1000,4000, 10000. 
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Figure 6: Secondary vortex at the left top corner. 

different grids: 129 x 129; 257 x 257 and 513 x 513 points. The convergence of the scheme is 
verified. Stable calculations are conducted for Reynolds number up toRe = 10000. Results are 
in very good quantitative agreement with the known results from the literature. 
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