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Abstract

A bicyclic splitting �nite di�erence scheme, applicable for the multi-dimensional case, is presented for solving the

unsteady advection-di�usion problem. The proposed scheme has an discretization error of O(� 2+h21+� � �+h
2

n
) under

some restrictions over the time step increment and it is absolutely stable. Two kind of discretizations for advection
terms are considered. The present scheme is examined through numerical experiments for the two-dimensional

advection-di�usion problem.
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1 Introduction

The numerical solution of advection-di�usion transport problems arise in many important applications in science and
engineering. These problems occur in many applications such as in the transport of air and ground water pollutants,
oil reservoir ow, in the modeling of semiconductors, etc. The great interest in the numerical solution of singularly
perturbed problems has recently been demonstrated by many authors, see [2, 7, 8, 5] among many others.

This paper is concerned with the numerical solution of the unsteady linear advection-di�usion problem
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with initial condition

�(x; t0) = g(x);(2)

where the small scaling parameter � > 0 indicates advection dominated ow, vi = vi(x; t) are the velocity components.
Proper boundary conditions of Dirichlet, Neumann or periodic type are imposed on the boundary � = @
. We assume
that 
 = fa1 � x1 � b1; a2 � x2 � b2; : : : ; an � xn � bng.

Let Ak, k = 1; : : : ; n denote the advection-di�usion operator in direction xk:

Ak = vk
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Then the equation (1) can be written into the following evolution form

@�

@t
+A� = 0; where A =

nX
i=1

Ai:(4)

The advantage of the operator-splitting schemes for solving the initial value problem (4), (2) is that they are
economical as explicit schemes and can retain the unconditional stability inherent in some of the implicit schemes.
It is well known that there are a lot of di�erence schemes of the type of alternating direction scheme, which are
unconditionally stable in the two-dimensional case with second order accuracy (most of them only for commutative
operators). However, the construction of such schemes for multi-dimensional problems when the operators are not
pairwise commutative (namely AkAl 6= AlAk) encounters considerable diÆculties. In addition to this if the operators
Ak depend on time, i.e. Ak = Ak(t), like the advection operator in the above problem, the simply generalization of
the splitting methods for n > 2 is impossible.

2 Numerical method

2.1 Time splitting method

We use the bicyclic splitting scheme of additive type, which can be employed in the multi-dimensional case. The
additive splitting was suggested by Samarskii in 1962 (see [10]) and the theory was developed in [6, 9, 11]. In these
books the idea of bicyclic splitting is outlined also.

In the interval tj�1 � t � tj+1 we solve the following one-dimensional problems
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where � is the time step increment, �
j

k
= �k(tj) are the di�erence approximations of the operators Ak; k = 1; : : : ; n.

The initial conditions for the one-dimensional problems (5), (6) are
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After some manipulation the equations (5), (6) adopt the form�
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First we solve the equation for �j�1+
1

n (k = 1 in (9)), with the initial condition �j�1+
1

n (x; tj) = �j�1(x; tj�1), and

determine �j�1+
1

n (x; tj), which is later used as an initial condition when determining �j�1+
2

n (x; tj), and so on. On
the next stage we solve the equations (10) in the same manner as equations (9) using �j(x; tj) as an initial condition
for the �rst equation. We take �j+1(x; tj+1) as an approximate solution of the problem (1), (2) at time tj+1.

Under some additional restriction of smoothness we have the estimate k�j+1(x; tj+1) � �(x; tj+1)k = O(�2). The
accuracy of the scheme with respect to the time is of second order, independently of that the operators �k are pairwise
commutative or not.

2.2 Spatial Discretization

We use a uniform grid in each direction xk with a steps size hk = (bk � ak)=(Nk � 1), where Nk is the total number
of grid points in direction xk, k = 1; 2; : : : ; n. We employ standard central di�erence approximation for the di�usion
operator in (3). For comparison we consider di�erent approximations for the advection operator in (3).

The POLE scheme, constructed on the base of the Finite Variable Di�erence Method [8], is robust for large values
of the mesh Reynolds number Rm = (vh)=�. This new scheme, called newly POLE, combines the QUICK scheme for
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Rm � 8=3 and POLE scheme for Rm > 8=3. The accuracy of the POLE scheme is of second order with respect to the
mesh size �x for Rm greater than 3 and of third order at Rm = 3, while the QUICK scheme is of second order. From
the view point of the monotonicity, Rm = 8=3 is the critical value for the QUICK scheme, which is not monotone for
Rm > 8=3.

It is possible to approximate all operators (including the advective term) with central di�erences with second order
of approximation. Such approximation (proposed by Arakawa [1]) have been employed in [4] for the nonlinear terms
in the vectorial operator-splitting scheme for the Navier-Stokes equations. The eÆciency of this central di�erence
approximation for the convective terms in Navier-Stokes equations is clearly demonstrated in [4].

If the velocity components satisfy the condition

nX
k=1

@vk

@xk
= 0(11)

then we can use the following representation
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of the advection operator in direction xk in (3). It is readily that the operator Ck satis�es the following condition
(Ck�; �) = 0 if the functions vk (k = 1; : : : ; n) and �, satisfy appropriate conditions on the boundary (for example,
if these functions are periodic, or satisfy homogeneous boundary conditions, etc.). Under the above assumptions we
have
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The following di�erence approximation Ck of the operator Ck, see [1, 4, 6],
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where ik denotes the number of a grid point of the variable xk, has a second order of spatial accuracy and satis�es
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Both the stability and convergence of the di�erence scheme can be proven under severe conditions for the time step
� = O(h2), where h2 =

P
n

k=1
h2
k
. The main purpose of our work is to present the method and for the sake of brevity

we shall skip the part of the study concerning the apriori error estimates for the di�erence scheme. The multi-diagonal
systems are solved by means of a specialized solver [3] which is a generalization of so called Thomas algorithm.

3 Numerical Results

The accuracy of the developed here bicyclic splitting di�erence scheme and algorithm are checked by tests involving
di�erent values of the parameters of the scheme: �, the time step increment � and grid spacing h. We conducted a
number of calculations in order to verify the practical convergence and the O(�2+h2) approximation of the di�erence
scheme.

Example 1. First we show that the solution of our scheme has O(h2) approximation if the velocity components
are

v1 = t cosx1(cosx1 + sinx2); v2 = t sinx1(cosx1 + sinx2):(16)

The analytical solution is

� = (cosx1 + sinx2) exp(��t)(17)

in the domain 
 = f0 � x1 � 2�; 0 � x2 � 2�g and 
t = f0 � t � Tg. The accuracy of the scheme with respect
to the grid sizes hk is examined by tests with di�erent values of hk, namely hk = �=8; �=16; �=32; �=64 for �xed
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Figure 1: Example 1|di�erence between �num: � �anal: .

� = 10�5 and � = 0:002. For this value of � , the spatial discretization errors are substantial in comparison with the
time discretization error. In this way we are able to see the decrease of the error due to the spatial discretization. The
value of T is chosen to be T = 1. In this test we check the accuracy of the both schemes|skew symmetric central
di�erence scheme (SCD) and POLE scheme. The di�erences between the numerical and analytical solution along the
horizontal cross section y = �=4 for the POLE scheme is presented in Figure 1 a). These results con�rm the O(h2)
accuracy of the solutions, obtained with both schemes. In this case the convergence of the POLE scheme is faster
than those of the central di�erence scheme. There are no oscillations of the solutions with the both schemes.

To test the accuracy of the solution due to the time discretization we perform calculations with central di�erence
scheme for time steps � = 0:2; 0:1; 0:05; 0:025 and �xed values of � = 10�2, hk = �=32, T = 1:2. Figure 1 b) clearly
shows the O(�2) di�erences between the numerical and analytical solution. Note that the solution of this example and
velocity components depend on t, x1, x2.

The computational results of the above test show that the bicyclic splitting scheme is robust for very small values
of the parameter �. We are able to obtain an accurate solution even for � = 0.

Example 2. We consider the advection-di�usion problem with the following initial condition

�(x1; x2; 0) = expf�[(10x1 � 3)2 + (10x2 � 3)2)]g(18)

and v1 = v2 = 0:1, h1 = h2 = 0:0125, � = 0:01. The initial condition is shown in Figure 2a). The numerical solutions
for � = 10�2 is presented in Figure 2b). In this case the di�usion term is dominant and we observe smearing of
the wave due to the viscosity �. The results for � = 0 are shown in Figure 3. In this case in the equation (1) only
the advection term is presented and the initial wave propagates with no reduction in the amplitude if the velocity
components are constant. The analytical solution of this problem is

�(x1; x2; t) = expf�[(t� 10x1 + 3)2 + (t� 10x2 + 3)2)]g:

Figure 3 a) shows the numerical solution obtained by the central di�erence scheme at the moment t = 4. The
Figure 3 b) presents the exact solution and the numerical solutions on the diagonal cross section for central di�erence,
POLE (second order upwind scheme for � = 0) and �rst order upwind scheme. There is a very small reduction of
the amplitude of the initial wave in SCD solution due to discretization. For the POLE solution this reduction is a
little more, while for the upwind scheme|large. Table 1 presents the maximal value and location of the wave for
di�erent values of hk and � at the moment t = 4 for CD scheme and POLE scheme for � = 0. The exact values of
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Figure 2: Example 2, h1 = h2 = 0:0125, � = 0:01.
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Figure 3: Example 2|numerical solutions from initial condition (18) at the moment
T = 4, v1 = v2 = 0:1, h1 = h2 = 0:0125, � = 0:01.

these characteristics of the solution are 1: and (0:7; 0:7). The numerical values are interpolated in the following way:
9-point stencil is formed with the extrema in its central point and the function is approximated with 2D second-order
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Table 1: Maximal value (location) of the solutions for di�erent value of � and hk. Exact values|1:0000(0:7000).

Sch. � / hk 1=40 = 0:025 1=80 = 0:0125 1=160 = 0:00625 1=320 = 0:003125

SCD 0:1 0:9430(0:6780) 0:9923(0:6922) 0:9985(0:6965) 0:9993(0:6977)
POLE 0:7791(0:7246) 0:9537(0:7085) 0:9941(0:7000) 0:9991(0:6988)

SCD 0:02 0:9473(0:6791) 0:9948(0:6938) 0:9996(0:6984) 1:0000(0:6995)
POLE 0:7737(0:7257) 0:9493(0:7102) 0:9915(0:7000) 0:9991(0:7000)

SCD 0:01 0:9474(0:6791) 0:9949(0:6939) 0:9997(0:6984) 1:0000(0:6996)
POLE 0:7735(0:7257) 0:9492(0:7103) 0:9914(0:7000) 0:9991(0:7000)

SCD 0:005 0:9474(0:6791) 0:9949(0:6939) 0:9997(0:6984) 1:0000(0:6996)
POLE 0:7735(0:7258) 0:9491(0:7103) 0:9914(0:7000) 0:9991(0:7000)

polynomials on the stencil with third order of approximation. Upon setting the partial derivatives equal to zero the
location of the vortex is identi�ed. After that the amplitude of the vortex is calculated from the polynomial in the
location. It is seen from the table that the results for the maximal value of SCD scheme is more accurate then those
of POLE scheme, while for the location of the maximal value the POLE scheme gives better results for hk � 1=160.

4 Conclusions

A �nite di�erence method for the unsteady advection-di�usion problem has been presented, based on bicyclic splitting
with di�erent spatial approximations for advective term|POLE and central di�erence scheme. This method was
chosen in order to obtain a stable numerical solution at a higher order of accuracy with a low computational cost.
The numerical experiments show the advantages of the method. The consistency and convergence of the scheme and
veri�ed numerically via mandatory tests with di�erent resolutions and time increments.
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