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5. Conclusions. An effec tive BIM is presented for simulation of drop-to-drop interac
t ion in close approach . The main advantages of the presented method with respect to the 
existing ones are: 

(i) contour integration of the singular surface integrals, which significantly improves the 
accuracy of the method; 

(ii) a multiple time step integration scheme, which significantly improves the perfor
mance of the simulation, allowing simulation at very small capillary numbers. 

The presented method is capable of simulation of film thickness down to 10- 3 of the drop 
radi i and capillary numbe rs down to Ca = 0.01. These are of an order of magnitude smaller 
than the existing results found in the literature. However, even with such an improvement, 
3D simulations are still far from intensive investigation of drop coalescence. A successful 
alternative proves to be a modification of the recently developed 2D asymptotic theory, which 
has the advantage that it is computationally much more effective than 3D simulations. 
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FULLY IMPLICIT IMPLEMENTATION OF BOUNDARY CONDITIONS IN 
OPERATOR-SPLITTING METHODS FOR STEADY INCOMPRESSIBLE 

NAVIER-STOKES EQUATIONS • 

C. I. CIHUSTOVI, R. S. MAR!NOVAI, AND T .T. MAR! NOV! 

Abstract . The steady inoornprcssible Navicr~Stokes equations in primi tive variables arc solved by means 
of au implicit vectorial operator-splitting scherne. The method allows for complete implicit coupling of the 
boundary conditions. Conservative approximations for the advective terms are employed on non-uniform 
staggered grid. The performance of the scheme Is demonstrated on the lid-driven now In a rectangular cavity 
of aspect ratio two. Resul ts are obtained up to Tk = 5000. 

Key words. Navier-Stokcs, Incompressible Viscous Flow, Operator-Splitting. 

Introduction. In the incompressible Navier-Stokes equations the pressure is an im
plicit function for which no boundary conditions can be specified at the boundaries save 
the free surfaces. At the internal boundaries, the velocity components are prescribed (non
slip conditions): uj80 = Ub . The problem persists when vorticity function is used and no 
boundary conditions for the vorticity are available for the latter. This makes roost of the 
algorithms subject to inextricable explicit element introduced by the iterative decoupling of 
the system. This is especially hard difficulty in operator-splitting schemes. 

In the present work we consider the operator splitting for the incompressible Navier
Stokes equations. We propose a special treatment for the split operators which leave the 
pressu re function coupled to one of the velocity components. Thus no artificial boundary 
conditions are needed for the pressure and the scheme is fully implicit. 

In order not to obscure the main mathematical idea of the present paper we consider 
square domains with Cartesian coordinates. The geometric limitations for the proposed 
technique are just the same as for any other finite-difference method and after the numerical 
correctness is demonstrated the technique will be applied to more complex flow geometry 
and/or rheology. On this stage there are mathematical issues to be clarified which justifies 
the usage of a simple flow geometry. The second criterion in selecting the featuring example 
is the presence of benchmark calculations in the literature which can be used to test the 
novel technique . 

Two analytic solutions in a square domain are considered as featuring examples, as 
well as the flow in rectangular lid-driven cavity of aspect ratio two. The numerical results 
obtained here are in very good quantitative agreement with the analytic solutions and with 
the numerical solutions from the literature for the available values of lteynolds number. For 
the cavity flow the Reynolds numbers for which the solution is obtained significantly exceed 
the range from the literature. This can be attributed to the strongly implici t nature of the 
algorithm proposed in the present work. 
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of Regents. The support for T .T.M. from the Japan Society for the Promotion of Science (JSPS) under 
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1. Formulation of the Problem. Consider the steady incompressible Navier-Stokes 
equations in closed domain x E 11, with piece-wise smooth boundary an 

1 
Ret.u- "ilp- C[uJ = 0, (1.1) 

coupled by the continuity equation 

"il·u =0, (1.2) 

Here u = u(x) is the velocity vector, p = p(x) - the pressure. The lleynolds number is 
defined as Re = U Lfv, where U is the characteristic velocity, L - characteristic length, 
v - kinematic coefficient of viscosity. The operator C[u] is a short-hand notation for the 
advective term. For this term we usc the skew-symmetric form 

C[u] = "i1 · (uu)- 4u("il· u), (1.3) 

which follows from the continuity equation (1.2) [16] . 

1 In lieu of the continuity equation the well-known "Poisson equation for pressure" can 
be used . Following [6] we use a modified version of this equation which is obtained after 
subtracting the continuity equation (1.2), namely 

1 1 
-Ap- "il · u+ -"il · C[u] =0. 
Jle Jle 

(1.4) 

The advantages of the form (1.4) for pressure equation are discussed later. 
The formulation with equation for pressure is equivalent to the original system only if 

the continuity equation (1.2) is satisfied also on the boundary (see, [13, 141) 

"il · uJan = 0· (1.5) 

For the above introduced "modified Poisson equation for the pressure, the justification can 
be found in J7, 61) . 

To operator-splitting method can be used only for evolutionary systems, hence one needs 
to add in the governing system derivatives with respect to a time-like variable. For the 1/J -w 
formulation this has been done in J15J and called "Method of False Transients" . In our case 
it amounts to adding in each equation of the governing system (1.1), (1.4), derivatives with 
respect to a fictitious time t . Upon convergence, the time-derivative term vanishes, and 
equations (1.1) and (1.4) are satisfied. 

We recast the system for u and p as the following vectorial system 

where 

O=G). (

i:cA 
L = 0 

-\1 

-\1 

~eA 
-\1 

ao at = L[OJ + N[OJ + F[OJ, (1.6) 

~v ~) , F[OJ = ( ~ ) . 
0 0 Jb;"il·C[uJ 

0 ) (Cu -\1 , N=- 0 
_!_t, 0 
Rc 
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For incompressible flows, the pressure is defined up to an arbitrary function of time. 
For the sake of convenience we define this function similarly to [2, 1J as the average of the 
pressure at the specific time stage. To this end, the condition 

1n p(x, t) dx = 0, x E 11, (1.7) 

is added as an additional constraint on the pressure function for each t . 
Upon acknowledging the boundary conditions, we get for the evolution of the energy 

dE 11 . 11 - = --ll (\10) 2 dx +- p ("il· C[uJ) dx. 
dt en !len 

(1.8) 

Without the term we added in the Poisson equation for pressure, a non-definite term of 
unit order appears it in the right-hand side of equality ( 1.8) which term is not necessarily 
small on the initial stages of the iterative process. Now the only non-definite term is of 
order O(ne- 1 ). 

2. Vectorial Operator-Splitting. Each iteration (time step) is implemented via op
erator splitting because of its computational efficiency. We employ the second Douglas 
scheme (see [101) which is sometimes called "stabilizing correction" . It is of first order in 
time, but has advantages for non-commuting operators (see [171). 

The two steps of the scheme of stabilizing correction read 

on+l/2- 0" = Alon+l/2 + A20" + G", 
T 

on+ I - on+l/2 = A2(on+l - 0")' 
T 

(2.1) 

r is the increment of the fictitious time. llespectively, A1 and A2 are the x- and y- compo
nents of the operator L + N form (1.6). 

The implementation of the scheme of stabilizing correction corresponds to determining 
on+l/2 and on+l from the equations 

(I- rAI)o"+ 112 =(I+ rA2)0n + rG", (I- rA2)on+l = on+l/2 - rA 2 0n, (2.2) 

l ~r 0 E 0 , where E is the unitary operator. The notation (2.2) indicates that the 
(

E 0 0) 
0 0 E 

solution can be found by inverting the one-dimensional grid operator first with respect to 
one variable and then with to respect to the other variable. The half-time-step variable 
(jn+ 112 can be eliminated from (2 .2) to get 

on+ I- on 
(I+ r 2 AIA2) = (AI+ A2)on+l +en. 

T 
(2.3) 

It is readily seen now that upon convergence (i .e. when liOn+ I - 0"11 ___. 0), the solution of 
the evolution problem approaches a steady-state which docs not depend on r . 

3. Difference Scheme. We use non-uniform grid (sec Figure 3.1-a) which is staggered 
for u in x-direction and for v- in y-direction (sec, also [41). This allows one to use for the 
derivatives central diffcrcnc<-'S with second-order of approximation on two-point stencils. The 
number of main grid lines (the p-grid) are respectively N, and Ny . The numbers of intervals 
arc Nx- 1 and Ny- l. The coordinates of the grid points arc (x;, y1) for i = l , ... , N., 
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j = I, ... , Ny . Tlte spacings of the p-grid are given by h; =X;+ I - x;, and k; = Yi+l - Yi · 
Tlte spacings for tlte u-grid and v-grid are a.s follows 

hj = h,, hi= !(h; + h,_l) fori= 2, ... ,N,- I, and h'N. = hN, - 1, 

k~ = k, , k'j = !(k; + k;-d for j = 2, . .. , Ny- I, and k'f.:. = kN.-1 · 

--· ~-----rvi,";:;:-.- I 

I 

~i,j+l Jr•.J+l Tui+t,J-41 
Q 

__ _.... __ 
·v a- l ,J "f: l 

--+--
tli ,J+l : VHI ,j~l 

~Ut - l.j i - l , j ;t'i , j i,j !Ut:+l,j V'i+ l,j TU1+2 , j 

• I ti,";--- -lv;+l,J ; 
o.... ... .. 1 

-----tli-l,j 

~~ · .l :: tt====j~t ... ¢ 

*- ___ -•v..!..ti=..l _ _ -~ 
y = O;~.;-'-------;--'-: 

0 ------- - x,u 
x=O x=a 

(a) (b) 

FIG. 3 . 1. Computational domain with the grid (a} ; the finite -differenu. •tencil (b) . 

In Figure 3.1-b the pre:;sure is sampled at the points labeled by "•"; function u -
at "o" ; function v - at"*" · The following notations are used: p;,; = p(x;,y;), u;,; 
u(x; - ~ ~~i - 1 1 II; ), Vt,j = v(x;, Yi- ~k;_ l). 

We employ three-point diiTerence approximations for the second-order derivatives 

81 I I = 2 ( IHI,j- /;,; - /;,;- !1-l,j) + O(h,h,_ ,), (3.1) xl . . h; + h, _1 h; h,_ , I,J 

~~ = 2 ( /; ,i+J - /;,; _/;,;-/;,;- I) + O(k;k;_l), (3.2) 
8y1 j . kj + k; - 1 k; k, _ , ,J 

wiicrc f stands for u , v or p and h;, k; stand for the spacings of the respective grid . The 
derivatives 8pj8x and 8pj8y are approximated respectively on the u-grid ("o") and v-grid 
("•" ), while 8uj8x and 8vj8y are approximated on the main p-grid ("•"): 

ap I - Pi,j - Pi- l,j + O(h2 )· ap I = Pi,j - Pi,j-1 + O(k2_Jl. 
ax - hi- I •-I ! ay • k;- 1 J 

0 

(3 .3) 

au' - Ui+l,j- U;,; + O(h·h )· avl = Vi,j+l- Vi,j + O(k,k;_l). -a - 'u • ,_, , a kv 
X • Li Y • J 

(3.4) 

Tn (8, 91 the scheme proposed by Arakawa J31 for the !/J- w formulation for ideal flows 
was extended to Navier-Slokes equations. A similar idea in primitive variables was proposed 
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in Jl6l with a special reference to the operator-splitting schemes. It has been elaborated 
further in J7, 61 and forms the basis of the present work . 

(
a(u2) -~au) I = (u?+l,j + u~j)ut+l,j- (~~j + u?-l,j)ui- l,j + O(hjhj_,), 

ax 2 ax 0 2{hj + hi-1) 

(
a(uv) - ~ av) I = (v~i+l + v;'_l,i+l)u;,i+l- (vri + vf_,,;)ui,j-1 + O(k;k; _J), 

ay 2 av 0 2(k; + k;-d 

(
a(uv) _ ~au) I 

ax 2 ax • 

(
a(v

2
) _ ~ 8v) I 

av 2 ay • 

(u;+,,; + u?+l,j ,)vHI,j- (u~i + u~;- l)v;- l,j + O(h;h;_,), 
2(h; + h;_l) 

(vri+l +vr;)vi,i+l- (vr; +v~;_,)v;,;-1 +O(k'jk'J-~)· 
2(kj +kj_l) 

for which it is easy to verify the equalities 

(C,';JuJ. u) = 0, (C~Jul, u) = 0, (c;.Jvl, v) = 0, (C~'Ivl, v) = 0. 

One of lite systems for tlte respective velocity component is always conjugated to the 
system for pressure set function. For instance, on the first half-lime stage one is to solve 
two linear algebraic systems: one for the difference function 

n+ t _ l J n+t n+t n+l/2 n+l/2 I v - co umn vl,j I •• • I vi,j 1 • •. I VNz,i I VNz+l,j 

with tridiagonal matrix, and a conjugated one - for the "composite" difference function 

+ 1 n+! n+ ~ n+! n+! n+ ! n+! n+! I 
w" 2: = column{ul,j 1 Pt,j 1 •• • 1 u,,,. IPi ,j I ..• ' UNz,j1 PN;z:,jl UNz+I,j 

which turns out to be a pentadiagonal system twice the size of the tridiagonal one. 
On the second half-time step one has to solve a tridiagonal system for 

n+l I [ n+l n+l n+l n+l 1 u == co umn u,, 1 , · · · 1 ut,j , · · · , ui,N
11 

1 ui,N
11
+ 1 

and a pcntadiagonal system for the "composite" difference function 

n+l _ I [ n+l n+l n+l n+l n+l n+l n+l I z - coumnvt,l ,Pt,I , . .. ,v,,j ,Pt,j , . . . ,vi,N
11

,Pt,N
11

1vi,N
11
+1 1 

We solve the multidiagonal systems by means of a specialized Gaussian-elimination 
solver [51 employing pivoting which is a generalization of what in the tridiagonal case is 
called Thomas algorithm. 

The general sequence of the algorithm is as follows 
(i) Set values of the parameters Re, r, e:, Nx, Ny and the initial guess u?,;• v?,;. P?,; ; 

(") C l I I I n+t n+t n+t . n n n b k 
11 a cu ale lie va ucs u;,; , v;,; , Pi,j assuming u,,1, V;,;, P;,; to c nown; 

("') C 1 1 t th 1 n+l n+l n+l • n n n l n+!- n+ !- n+! 111 a cu a c · c va ues uid , v1.,- , Ps,; us1ng u1,;, v,,,., Pt.,; anc u1,; 1 viti , Ps,; . 

Set the pressure p~j' := p~j' - _pn+l, where _pn+l is the average of the pressure; 
(iv) If the following criterion is satisfied 

dcf max;; l/;"+1
- f." ·i 

max{ R"(n), Rv(n), R"(n)} ~ e:, where nl (n) = ' '3 n+l '3 (3.5) 
r max;,; If, i I 

then the calculation arc terminated . Otherwise the index of iterations is stepped 
up n := n + l and the algorithm is returned to step (ii). 
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4. Numerical Results. To verify the practical properties of the new scheme we con
duct numerical tests with different benchmark problems for large values of H.e using fine 
grids {uniform or not). 

First we consider the following two analytic solutions of the Navier-Stokes equations 

1 1 
u = Re - exp(x + y), v = H.e + exp(x + y), p = 0, 

u = exp(y) cos(x), v = exp(y) sin{x), p = -~ exp(2y). 

( 4.1) 

(4.2) 

The numerical calculations are conducted in the region n = {0 ~ x ~ 1, 0 ~ y ~ 1} on a 
uniform grid. The first solution depends on Re, while the second one has nonzero pressure 
gradient. From the analytical expressions {4.1), {4 .2) are derived the respective Dirichlet 
b .c. for velocity components. No boundary condition is imposed on the pressure function. 
The following maximal and average errors arc used: 

lmax =max !rum. _ f!'~al.l 
t,) t,] l 1J I 

1 
laver = ---"" 1/in~m . - rn•l.i 

NxN
11 

L._.- ·' •.1 • 
•,J 

(4 .3) 

where f stands for one of the functions u, v or p. 

l 

w• r7"========:::;--~---...., 

w·• 

10'' 

10-J 

10"' 

--
- •- u, maximum 

v, maximum 
u, average 
v, average 
h2 

l/64 1132 
h 

(a) 

l/16 l/8 

l 

10"'~--~-;::::::::==========:::;'1 

10-t 

- -t- u, maximum 
v, maximum 
u, average 

... 0 ·· v, average 

·------·------·------·------· . -·- ·- . -·-. •· -·-·-·- '-·• .- .- '- .-.-... - .- .- .- . -· 
w··~ 

lo ·· · ·· < 

10_,......_ ___ ...._ ___ ~---~-----'-! 
0.001 O.Ql 0.1 l 10 

{b) 

FIG. 4.1. ETTOr in the •olution (4 .2} for Re = 10 43 a function of the: (a) meoh •pacing h = "• = hv, 
r = 0.1 ; {b) time increment r, h = 1/32. 

The maximal and average discretization errors for u and v in (4.2) are presented in 
Figure 4.1 for H.e = 10. The left panel shows the error for different grid spacings. It is 
readily seen that the truncation error is of order O{h2

) . In its turn the results presented 
in Figure 4.1 {b) confirm that there is no dependence of the steady-state solution on the 
magnitude of time increment T . 

The second featuring example is the well-known lid-driven cavity problem. Lid-driven 
flow in a. square cavity has always been a. standard case study for any new scheme for Navier
Stokes equations. Results arc available for this flow problem from a number of sources (sec 

FULLY IMPLICIT OPERATOR-SPLITIING METHODS FOR NAVIER-STOKES EQUATIONS 33 

[6] for a literature survey). Here we consider a rectangular cavity occupying the region 
n = {0 ~ x ~a, 0 ~ y ~ b} and the boundary conditions read 

u(x, 0) = u{O, y) = u(a, y) = 0, u(x, b) = 1, 

v(x,O) = v(x,b) = v(O,y) = v(a,y) = 0 

ux{O, y) = Ux(a, y) = v71 (x, 0) = v71 (x, b) = 0. 

{4.4) 

(4 .5) 

(4.6) 

Alongside with the Reynolds number Re, the aspect ratio A = bfa enters as a second 
parameter. The flow regime is more complex for deeper cavities. For instance, the results 
in [12] indicate a Hopf bifurcation for the flow with A E [1, 2] for 2000 ~ Rec ~ 10,000. 
Steady solutions for A = 2 were obtained in [4 , 11] . We consider a rectangular cavity with 
aspect ratio A = 2. All computations are done with e = w- 10 in (3.5) . 

TABLE 4.1 

Re 

1000 

3200 

5000 

Ref. 
data 

(4] 
(11] 
Pr. 
Pr. 
Pr. 
Pr. 
Pr. 
Pr. 
Pr . 
Pr. 
Pr. 

Coordinate" of the extrema of the &tream function . 

1/h Primary Top Vortex Primary Bottom Vortex 
tPmin (xmlno Ymln) tPmax (xmaxo Ymax) 

256 -0.1169 0.5273, 1.5625 0.0148 0.3516,0.7891: 
256 -0.1187 0.5313, 1.5781 0.0132 0.3359, 0.8476, 
256 -0.114547 0.5309, 1.5791 0.012763 0.3423, 0.8373, 
512 -0.117095 0.5302, 1.5794 0.013119 0.3423, 0.8378 

R256 -0.117945 0.5299 1.5795 0.013330 0.3424 0.8379' 
256 -0.113984 0.5183, 1.5625 0.017716 0.4489, 0.6829, 
512 -0.118552 0.5177, 1.5643 0.018580 0.4505, 0.6857 

R256 -0.120075 0.5175 1.5648 0.018869 0.4510 0.6866' 
256 -0.112407 0.5161, 1.5608 0.019258 0.4644, 0.6568, 
512 -0.118051 0.5155, 1.5634 0.020347 0.4652, 0.6628, 

0.4655 0.6646 R256_ -Q._U9933~lQl.. LQ642 _0,020112 
R--=n.ICllardson extrapolation from solutions 256 x 512 and 5.12 x 1024; Pr. - pre&ent result.. 

First we usc uniform grids with spacings h = k = 1/64, 1/128, 1/256, 1/512. The rate of 
approaching the steady solution depends on the time increment r . The optimal value ofT is 
found from the numerical experiments to beT ~ 0.09. The final results for a given Reynolds 
number are obtained as a Richardson extrapolation from the solutions with h = 1/256 and 
h = 1/512 and used as benchmark. Different non-uniform grids are used and the results are 
compared to the benchmark calculations. As a rule, the overall accuracy of the numerical 
solution obtained with h = 1/128 on a uniform grid is the same as the benchmark solution 
with h = 1/512 on the uniform grid . 

The streamlines and vorticity isolines are presented in Figure 4.2 for Re = 1000, 3200, 
and 5000. There is a significant difference between our results (4] in the lower part of the 
cavity. This is probably due to instabilities during iterations reported in [4] . The bottom
right and bottom-left secondary vortices are more intensive in our work comparing to [llj . 
The locations and intensities of the primary and the secondary vortex are presented in 
Table 4.1 for Re = 1000. There is a good agreement between our results and (4] for tPmino 
while for tPmax the computational results in [11] are closer to our results (the difference is 
less about 1% whereas the difference from (4] is greater than 10%) . For Reynolds numbers 
Re > 1000 we were unable to find in the literature a steady state solution for comparisons. 

Here is due a note on the stability of the method . The distinctive feature of the present 
implementation L~ the artificial time which renders the steady-slate problem under consider
ation into Cauchy-I<ovalevskayasystem. At the time, the physically unsteady Navicr Stokes 
equations arc not a system of the said type. For this reason the stability properties of our 
boundary-value problem can differ from the respective properties of unsteady Na.vicr-Stokcs 
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Ftc. 4.2. Upper paneL!: Streamline.t for different Reynold.! number.! with conto~r value.,: -- 6larting 
from zero with increnle:nt -0.01; - - - .!Larting from +0.001 with incren•ent +0.003; - . - ·- . - .!larting 
/rom -0.00002 with increment -0.00004; · · · · · · · .!lartin9 front +0.0001 'with increment +0.000 1. Lower 
panel.,: Vorticity i3oline.s with contour value.s: --- 0; - - - -1, -2, -22 , -23 , -24 , etc.;-·- . - : - 1, 
2, 22 ,23 , 24 , etc. . 
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model. It should not surprise that we were able to reach higher Reynolds numbers than 
in the predominant part of the works available in the literature and that our results arc 
spatially smoother . This is partly due to the fact that we solve a coupled parabolic sys
tem for velocity components and pressure. The threshold of instability of our calculations 
cannot be immediately compared to the experiment. The same reasoning applies also to 
the iterative numerical solutions available from the literature with the difference that the 
stability properties of those solutions may also differ on their own from the physical stability 
due to the approximations employed there and the pseudo-time introduced inevitably by 
any iterative procedure. 

5. Conclusions. In the present work a new operator-splitting algorithm is proposed 
for the incompressible Navicr-Stokes equations in primitive variables. On each interme
diate half-time step the pressure remains coupled to one of the velocity components and 
the boundary conditions on velocity components arc satisfied strictly without the need to 
supplement them with artificial conditions for the pressure. The difference scheme em
ploys conservative approximations for the non-linear terms on non-uniform grid . The good 
agreement between the results obtained here and the known analytical and/or numerical 
results confirm the properties of the new scheme. The range of Reynolds number for which 
stationary solutions arc obtained exceeds significantly the literature . 

REFERENCES 

PJ S. ABDALLAH, Numerical .,olutiofl.!J for the incompre.s.!ible Navier-Stokc.! equatioru in primitive vari
able.!J wing a non-•taggered grid. Part II, J . Comput. Phys, 70 (1987), pp . 193- 202 . 

J2 J --, Numerico.l .solutioru for the pru.,ure Poi.!3on equation with Neuntann boundary condition wing 
a non-•taggered grid. Part I, J. Comput. Phys, 70 (1987), pp. 182- 192. 

{3J A. ARAKAWA, Computational do..ign for long-term numerical integration of the equatioru of fluid 
motion: Two-dimeruional incompre .. ible flow. Part/, J. Compul. Phys., I (1966), pp. 119- 143. 

{4{ C .-H. BRUNEAU AND C. JOURON, An efficient •cheme for •olving •teady incompru•ible Navier- Stoko. 
equatioru, J . Comput. Phys., 89 (1990), pp. 389- 413. 

ISJ C. I. CHRISTOV, Gaw.!ian Elimination with Pivoting for Multidiagonal Sy3Ll!nL!, Internal Report 4, 
University of Reading, 1994. 

J6J C. !. CIIRISTOV AND R . S. MARINOVA, Implicit vectorial operator •plitting for incomprc .. ible Navier
Stoko.. equatioru in primitive variable.!J, Comput. Methods in Applied Mech. Engn. 

{7{ --, Implicit 5Cheme for Navier- Stoke:J equatioru in 'primitive variable.! via vectorial OfH!rolor .split
ting, in Notett on Numer. Fluid Mech., M. Griebel, 0 . P. Jliev, S. D. Margcnov, and P. S . V8.88llevski, 
eds., vol. 62, Wieebaden, 1998, Vleweg, pp. 251 - 259. 

{8J C. l. CHniSTOV AND A. HmHA, Splitting schen~e for iterative solution of hi- harmonic equation. 
application to 2d Navier-Stoke• problems, In AdVllnces In Numerical Methods and Applications. 
Proc. of 3rd Int. Conf. on Numerical Methods O(h3 ) August 1994, Sofia, Bulgaria, (. Dimov, 
B. Sendov, and P. Vasilcvskii, eds., Singapore, 1994, World Scientific, pp. 341- 352. 

J9J --, Splitting •cheme for the str<llm-function forntulation of 2D uruteady Navier- Stoke• equatioru, 
C. R. Acad. Sci. Paris, t . 320, II b (1995), pp. 441-446. 

{!OJ J . DOUGLAS, On the numerical integration of 8 1u/8x1 +81uf8y1 by implicit method., SIAM Journal, 
3 (1955), pp. 42- 65. 

[llJ 0 . GovoN, High-Reynold., nurnbcr .!Olution.! of Navier-Stoke" equation u..'ing incremental unknoum..,, 
Cornput. Meth. Appl. Moch. Engrg., 130 (1996), pp. 319-355. 

[12J K. GUSTAFSON AND K. HALAS!, Cavity flow dynamics at higher Reynold. number and higher a..pect 
ratio, J . Comput. Phys., 70 (1987), pp. 271 - 283 . 

{!3J A. D. HENSHAW, A fourth-order accurate method for the incompre..-ible Navier-Stokc.• equatioN on 
overlapping grid., J . Comp. Phys., 113 (1994), pp. 13-35. 

[141 A. D. HENSHAW, ll.-0 . KREiss, AND L. G. M. REYNA, A fourth -order accurate diffcrcnr.e appmxima
tion for the incompre.osible Navier-Stokes equatioru, Comp. Fluids, 23 (1994), pp. 575--593. 

[l5J G. 0. MALLISON AND G. DE VA!!!. DAVIS, The method of faL<e lran..ient.• for the .•olution of coupled 
elliptic equation.• , J. Cornput. Phys, 12 (1973), pp. 435-461. 



36 C. I. CHRISTOV, R . S. MARINOVA, AND T. T . MARINOV 

I!GJ G . I. MARCHUK, Method3 of Numerical Mathematic•, Springer, Berlin, 1982. 
ji7J N. N. YANENKO, Method of Fractional Step•, Gordon and Breach, 1971. POINT-DISTRIBUTED ALGORITHMS ON LOCALLY REFINED GRlDS 

FOR SECOND ORDER ELLIPTIC EQUATIONS 

RICHARD E. EWING•, JJAN SHENI, AND JUNPJNG WANG I 

Abstract. A discretization scheme, which relates the mixed finite element method with cell-centered 
finite difference and finite volume element methods, is proposed for second-order elliptic equations on roc
tangular domains with locally refined composite grids. Optimal order error estimates and superconvergence 
results are established, both in L2 and pointwise along special Gauss-line loci . These error estimates hold 
for discontinuous pieccwige constant conductivity under some special assumptions about solutions. 

Key words. finite element method, finit.e difference me lhOO, fiuit.c volume method, aecond-order ell ipt ic 
equations, local refiucments 

AMS subject classifications. 65N30, 65FIO 

1. Introduction- Many mathematical models are governed by elliptic equations whose 
solution may exhibit fine structure within small regions of the computational domain. Many 
traditional solution techniques require a fine mesh covering the entire domain in order to 
resolve these fine local details. This method is inefficient, since the fine mesh is not needed 
in parts of the domain where the solution has a moderate variation. In some cases, this 
inefficiency can be tolerated; in others, it can be prohibitively expensive. For example, field
scale hydrocarbon simulations in mathematical modeling of enhanced oil recovery processes 
normally involve reservoirs of such a great size that uniform gridding on the length scale 
of the local phenomenon would involve discrete problems of such enormous size as to make 
solution on even the largest computers prohibitive . There is always a need for more effi
cient algorithms combining the latest achievement of numerical analysis and the particular 
features of emerging parallel computer architectures. 

Cell-centered finite difference approximations have very nice conservation properties 
and are quite popular in reservoir simulation, weather prediction, heat transfer, etc. They 
are especially useful for piecewise continuous coefficient problems !5] . Convergence analysis 
of the difference schemes for elliptic problems on rectangular cell-centered grids has b<.'Cn 
presented in !40] by Weiser and Wheeler, and the authors of this paper in !20], where 
the relation of the constructed schemes with mixed finite element discretization is used . 
In the mathematical and engineering literature, several authors have addressed refinement 
techniques (e.g., !6, 9, 15, 17, 26, 32, 37]) . 

Recently, Ewing and Wang have established the analysis of mixed finite element methods 
on locally refined grids !22] . Based on the mixed finite element structure and the algorithms 
we derived in !20], we formulate a scheme on locally refined grids, which is symmetric and 

has 0 ( h ~) superconvergence rates in our special semi-norms and optional O(h) convergent 

rates for both pressure and velocity in standard £ 2 norms. Our scheme seems to have 

•Institute for Scientific Computation, 612 John R. Blocker Building, Texas A&M University, 3404 TAMU, 
College Station, Texas 77843-3404 (richard-ewingOtamu .edu). This author wishes to acknowledge support 
from NSF Grants DMS- 9626179, DMS-9706985, DMS- 9707930, NCR9710337, DMS-9972147, INT-9901498; 
EPA Grant 825207; two generous awards frotn Mobil Technology Company; and Texas Higher Education 
Coordinating Board Advanced Research and Technology Program Grants 010366-168 and 010366-0336. 

tLockheed Martin, (i•henOftp.hutLgov) . 
!Mathematics Department, University o f Wyoming, Box 3036, Laramie, Wyoming 82071 (jun

pingO•chwarz. UWJIO. edu) . 

37 


	014336
	014403
	014429
	014458
	014528
	014559
	014623
	014648

