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Abstract. In this paper we develop further the Galerkin technique based on the so-called beam 
functions with application to nonUnear problems. We make use of the formidas expressing a product 
of two beam functions into a series with respect to the system. First we prove that the overall 
convergence rate for a fourth-order linear b.v.p is algebraic fifth order, provided that the derivatives 
of the sought function up to fifth order exist. It is then shown that the inclusion of a quadratic 
nonlinear term in the equation does not degrade the fifth-order convergence. We validate our findings 
on a model problem which possesses analytical solution in the linear case. The agreement between 
the beam-Galerkin solution and the analytical solution for the linear problem is better than 10^'^ for 
200 terms. We also show that the error introduced by the expansion of the nonlinear term is lesser 
than 10^' . The foeam-Galerkin method outperforms finite differences due to its superior accuracy 
whilst its advantage over the Chebyshev-tau method is attributed to the smaller condition number 
of the matrices involved in the former 
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INTRODUCTION 

Fourth-order boundary value problems (b.v.p.) are very common in the study of elastic 
beams and viscous fluid flow. In their vast majority, these problems cannot be treated 
analytically and thus a numerical approach is required. The demand for increased ac
curacy and reliability of the numerical technique is especially pertinent in bifurcation 
problems. Here we develop a fast and accurate Galerkin spectral method using the set of 
beam functions as basis. These functions were first introduced by Lord Rayleigh in his 
book "Theory of Sound" [1] to describe the vibrations of elastic beams clamped on both 
sides. 

The method has already been applied to Poiseuille flow [2, 3] and to the one-
dimensional g-jitter thermoconvective flow [4,5]. The complete orthonormal set of beam 
functions was chosen, because they automatically satisfy all the boundary conditions, 
avoiding Gibbs effects and guaranteeing a very good rate of convergence. 

The applications mentioned above involve linear boundary value problems. It is 
important to examine the performance of the beam-Galerkin technique when nonlinear 
terms are present. In this case, the technique requires formulas for the products of beam 
functions which were derived in [2] but were never put to practical use. The aim of this 
paper is to verify the different ingredients of the foeam-Galerkin technique for solving 
fourth-order nonlinear b.v.p's. 
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THE BEAM-GALERKIN METHOD 

In order to make the paper selfcontained we repeat here some basic formulas and 
compile the necessary new ones. Consider the fourth order Sturm-Liouville eigenvalue 
problem 

(i'̂ M 4 du 
-—r = Au, M = -—= 0, for x = ± l . (1) 
dy^ dy 

The nontrivial solutions (eigenfunctions) are given by 

1 

1 

75 

sinhAmX sinAmX 
sinhAm 

cosh KmX 

sin Am 

COS iCjiX 

cosh Km COS /CM 

COth Am — cot Am = 0, 

tanh Km + tan K^ = 0. 

(2) 

(3) 

The eigenvalues can be calculated numerically and first couple of them are given in 
Table 1. For m > 6 the asymptotic formulas K^ 
correct up to 16 decimals. 

TABLE 1. Magnitude of eigenvalues 

{m — j)7t and Am ̂  (OT + j)?! are 

An 

3,926602 
7,068583 
10,210176 
13,351768 
16,493361 
19,634954 

2,365020 
5,497804 
8,639380 
11,780972 
14,922565 
18,064157 

cothA^ 

1,000773 
1,000015 
1,000000 
1,000000 
1,000000 
1,000000 

tanh Km 

0,982502 
0,999966 
0,999999 
1,000000 
1,000000 
1,000000 

Note that the Sm functions are odd whereas the Cm functions are even, resembling 
trigonometric sines and cosines. We can see the graphs of a few members of our 
complete orthonormal (CON) system in Figure 1. 
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FIGURE 1. Left panel: the first three even members of the sequence, c„(x); right panel: the first three 
odd members of the sequence s^. 
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The derivatives of the beam functions can be expressed as series with respect to the 
CON system as follows: 

oo oo 4 2 2 2 
/ X^' / X^' — — n wi //IN 

m=l m=l ^~'^m 

"^ "^ - - 4K^X^ 
Cfi ^ ^ ^nm^m 1 ^n ^ ^ ^nm^m i ^nm ^mn= v-4 _i_ 5 4 ^ '̂  COtn Af^, (^Jj 

m = l m = l ~'hi^^m 

4 ^ "4 (g^ tanhg^- K:„tanhK:„), m 7̂  «, 

K„tanhK„ — {K„tanhK„f, m = n, 

{ 4/1 •^/l •̂  

. 4 ^ ."4 (4cothA„ - A^cothAm), OTT^M, 

Xn coth A„ — [Xn coth A„)^, m = n, 

For more details regarding the accuracy of formulas Eq. (4) see [5, 4, 6]. 
A very important reason for insisting on this technique is the convergence rate of 

the spectral coefficients. Implementing a technique described in [7] we arrive at the 
following theorem: 

Theorem 1. Suppose u{x) G "^^ ( [—1,1] ). Consider the fourth-order boundary value 
problem 

^u = au^"\x) + bu"{x) + cu{x)=f{x), u = u' = 0, for x=±l, (8) 

where a,b,c eR, a^O. Then, the convergence rate of the series u{x) = Y.'k=i^kCk{^) 
for the spectral solution of (8) is fifth order algebraic. 

Proof. The spectral series for the solution of (8) is given by 

1 
00 ^ 

u{x)=Y,'*kCk{x), Uk= Ck{x)u{x)dx. (9) 
k=l l-^ 

After successive integrations by parts, acknowledging the boundary conditions, the 
characteristic equation tanh K̂  + tan K̂  = 0, and making use of the fact that cj; = ĉ  = 0 
at X = ± 1, we get 

Uk 
u^"\x) /sinhKix sinK^x 
^KI VcoshKi cosKi 

x=l 1 
1 j [smhKkX smKkx\ (v). ^ , 

V^K-S J \ cosh Kk COS Kk 

(10) 
Due to the lack of differentiability of u beyond the fifth order, the last term will 

contribute upon integration by parts quantities, which are not trivially equal to zero. 
Hence, continuing the process will not cancel the terms of order K^. D 

This rate of convergence means that with only 100 terms we expect accuracy of order 
10-10. 

121 

Downloaded 18 Oct 2007 to 70.189.13.89. Redistribution subject to AIP license or copyright, see http://proceedings.aip.org/proceedings/cpcr.jsp



PRODUCTS OF BEAM FUNCTIONS 

To treat power-type nonlinear terms, we must have a formula for expressing products of 
beam functions into series of beam functions. The product of two even beam functions 
is expressed as a series of even beam functions as follows [2]: 

c„(x)c™(x) = y hrckix), V2hr = V2 / cn{x)c„,{x)ck{x)dx (11) 

_ K:„tanhK:„-(K:n,+>Q:)(tanhK:n,+tanh>Q:) K:„tanhK:„-(K:n,->Q:)(tanhK:n,-tanh>Q:) 
-{Km+Kkf + Kl -{Km-Kkf + Kl 

K:„tanhK:„-(K:n,+K:,̂ )(tanhK:n,+tanhK:,̂ ) K:„tanhK:„-(K:n,-K:,̂ )(tanhK:n,-tanhK:,̂ ) 
{Km + Kkf + Kl {Km-Kkf + Kl 

K:n,tanhK:n,-(K:„+K:,̂ )(tanhK:„+tanhK:,̂ ) K:n,tanhK:n,-(K:„-K:,̂ )(tanhK:„-tanhK:,̂ ) 
{Kn + Kkf + Kl {Kn-Kkf + Kl 

KitanhKi-(K:„+K:m)(tanhK:„+tanhK:m) KitanhKi-(K:„-K:m)(tanhK:„-tanhK:m) 

('Qi + "m j + % \Kfi — Kffi) -\- K, 

The respective formulas for CnSm and SnSm are similar and can be found in [2]. It is 
important to point out that the complicated nature of this formula is not a problem since 
the entries hf" need only be calculated once and stored in an array. Then, they can be 
retrieved whenever needed. 

hj '^- O(20k"^ 

1 
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1e-006 
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1e-012 

hJS20 ̂  o(78000k-^S) 

'-k̂  

i 

1 

\^k^^ 

T %̂. 

i 

23 5 20 50 200500 2000 20 39 67 200 500 2000 

ĥ '''̂ -̂ O(40000000k"''®^) hf'^°^O(11000000k-^^^) 

50 94 200 500 2000 130 250 500 2000 

FIGURE 2. The convergence rates of the series for the products c„c^, 
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We verify the performance of formula (11) numerically, i.e., we compare the prod
uct of some particular functions c„ and c^, c„Cm, with their Galerkin expansions (see 
Figure 2 for couple of combinations of functions). We have examined the convergence 
rate of the spectral coefficients /ĵ '™ for various values of n and m, and have observed 
peaks due to resonances at k = n — m and k = n + m. For small values of n and m, 
i.e., less than 10, we obtain convergence rates of order 1/fê , as expected. However, 
the situation starts deteriorating after that. For instance, /j^, ' '-^ O(780000/fe'*^). Then, 
/j4i.53 _ c»(4000000/fe4-67) and /jf''^° - C»(11000000/fe4-66). We attribute this to the 
stronger effect of the resonances. 

It is important to note though that the effect of this on the overall behavior of the 
scheme is limited because the slower convergence of /ĵ '™ corresponds to high k values. 
If Uk are the spectral coefficients of the solution of a fourth-order b.v.p. then a product 
UmU„ contributes fe"('"+") to a term of order k^K Recall, Um '~ 0{l/m^), u„ '-^ 0{l/n^) 
and so UmUn ^ 0(1/(OT + M)^). 

FEATURING EXAMPLE 

Consider the following generic nonlinear fourth-order b.v.p.: 

u^^\x)+2u"{x) + u{x) = l-Bu^{x), u = u' = 0, for x = ± l , (12) 

where the nonhomogeneous term is taken equal to unity for the sake of the illustration 
and the coefficient B can be chosen to be large enough in order to enhance the effect of 
the nonlinearity. 

Acknowledging the symmetry of the boundary conditions we expand the sought 
function u as u{x) = Y.'k^i UkCk{x). We also expand unity into series with respect to Cm-
Then following the Galerkin procedure the nonlinear problem is recast as the following 
nonlinear algebraic system: 

j=l ^^ m=ln=l 

for / = 1,. . . , Â , where /3,j and /jf" are defined in formulas (6) and (11), respectively. We 
solve the latter with iterative method in which the linear operators are inverted, while 
the nonlinear term is taken from the previous iteration. When the method is apphed to 
the multidimensional case, the simple iterative procedure may not be efficient enough, 
but for the purposes of the present work it is fully sufficient. 

First, we show the performance of the method for a linear case, 5 = 0, when the 
following analytical solution is available 

, , , 2cosx(cosl + sinl) + 2xsinlsinx ^,^, 
M(X) = 1 ^ r^- . (13) 

^ ' 2 + sm2 
We solve the above system and verify that the convergence is indeed fifth order algebraic. 
The pointwise error of the obtained spectral solution is presented in Figure 3 for Â  = 
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iflMtAilAMAtbjA/MA/\/v^Ai»Vi»^/VWM»^.jillflAAli>j^l 

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 

FIGURE 3. The difference between the spectral and analytical solution (Eq. (13)) for A' = 200. 

200. The maximal error is of order of 10^^^ which is fully consistent with the fifth order 
of approximation 200^^. 

Unfortunately, there is no analytical solution when B ^ 0. In order to verify the 
performance of the method we resort here to another approach. We take a simple 
function that satisfies the boundary conditions, say M(X) = (1 v.2\2 and expand it into 
even beam functions. We then apply product formula (11) to compute its square. The 
results are then compared to the exact function g{x) = M^(X) = (1 — x^)'* and to the 
direct spectral expansion of ^(x). This demonstrates the performance of formula (11) in 
representing the square of a known function. 

¥<i^i<yT^^ 
FIGURE 4. Comparisons for the expansion of the square of the function M = (1 — x^)^. Solid line: with 
the analytical expression for u^. Dashed line: with the squared spectral expansion of u. 

In order for this comparison to take place, formulas for expanding even powers of x 
into even beam functions had to be derived: 

- 1 V2 
-(tanhJCm —tanJCm 

/ x^Cm(x)dx=v2 

4 » ^ ^ » ( » - l ) ( » - 2 ) ( » - 3 ) r i ^ „ _ , ^ ^ ^ -

1 
(tanh Km — tan K^ 

X Cm(x)dX: 
V2 

X Cm(x)dX: 
1 

72 

/ 2 4 8 . . ^ 
( h - j ) (tanh Km — tan K„ 

K-m K^ 

6! 
( h -j)(tanh Km - tan Km 

^m KL 

4 " 
r2 
^m-^ 

1 

) ^^1 Kn-
1 

24 4-6! 

Kn 1 
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1 1 
S / \ 1 

A. Cm \Jyj vUi. — "p^ 

-1 V2 

- (tanh Km — tan K„ 

•7-6-5 

X" 

32 

2 48 
—+ — (tanhJCm tanJCm 1̂  

The most important finding here is that the acknowledgment of the nonlinear term 
does not degrade the fifth order of the convergence, as testified by Figure 5. 

0.01 

0.0001 

1e-006 

1e-008 

1e-010 

1e-012 

F I G U R E 5. Fifth order rate of convergence for the solution of the nonlinear equation. Solid line: %; 
dashed Une: Ui = 0.01 i^ . 

It must be noted that we did compare the spectral solution of Eq. (12) (the one whose 
coefficients are presented in Figure 5) to two different numerical solutions based of finite 
differences and on a Chebyshev tau method. The results differ slightly from the results 
of the two alternative techniques. 

The finite difference scheme is of order 0{h^). When tested for the linear problem, the 
agreement with the exact analytic solution was limited to two or three significant digits. 
Thus some small disagreement with the beam-Galerkm technique is expected because 
even for 10000 points the error of the finite difference method is of order 10^*. 

TABLE 2. Condition Number Estimates us
ing IMSL routine DLFCRG. 

N 

10 
20 
50 
100* 
150 
200 
250 
300 
350 
400 

(Beam) 

0.37216988E+03 
0.17644881E+04 
0.20897013E+05 
0.22308957E+06 
0.10256813E+07 
0.31280912E+07 
0.75100639E+07 
0.15431671E+08 
0.28433312E+08 
0.48335713E+08 

(Chebyshev) 

0.22352482E+09 
0.35951175E+10 
0.47854602E+13 
0.70174753E+15 
0.12419855E+17 
0.45545491E+18 
0.45545491E+18 
0.16423978E+19 
0.48536036E+19 
0.12401339E+20 

* From this value of N and onward, routine 
DLFCRG declares the Chebyshev matrix 
algorithmically singular. 

The problems with the Chebyshev-tau method are different. This method, just like the 
beam-Galerkin method reproduces the analytical solution of the linear problem (B = 0) 
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very well. However, the condition number of the Chebyshev-tau matrix increases dra
matically with the number of terms Â  (see Table 2). So, the error increases significantly 
when we multiply with the inverse many times. Note that when investigating actual non-
stationary physical problems, thousands or millions of such multiphcations are required, 
because for some parameter values we must run the program for thousands of periods. 

Our assertion is that the beam-Galerkin method is more rehable than the other two. 

CONCLUSIONS 

The earlier developed beam-Galerkin method is extended to nonlinear problems. To this 
end, the formulas for expressing the product of two beam functions are examined and 
consequently implemented in a fourth order nonlinear b.v.p. with square nonlinearity. 
It is proven that the overall convergence rate for a fourth-order linear b.v.p is algebraic 
fifth order, provided that the derivatives of the sought function up to fifth order exist. 

It is observed that the coefficients /ĵ '™ of the product of two even beam functions 
converge with algebraic rates ranging from order 0( 1/fê ) for small indices n,m< 10 to 
0(l/fe'*^) when « > 80 or m > 80. This deterioration is attributed to resonant peaks at 
k = n + m and k = n — m but it does not affect the overall fifth rate of convergence. 

Our findings have been validated in two ways. Firstly, by expressing the square of a 
known function u^{x) using the product formula and comparing it to its direct expansion, 
and the exact analytic square of the function. It was shown that the error introduced 
by the expansion of the nonlinear term was less than 10^'. Secondly, by solving a 
fourth order nonlinear b.v.p. with square nonlinearity. The results are compared to finite-
differences and a Chebyshev tau method and shown to disagree insignificantly. The finite 
difference scheme is of order 0{h^) (which gives error of order 10^* even for 10000 
points), whilst the condition number of the Chebyshev-tau matrix increases drastically 
with the number of terms Â , leading to compounding of the error during iterations. Thus, 
the beam-Galerkin method is the most reliable for the problem under consideration. 
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